首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neeraj Sharma 《Solar Energy》2011,85(5):881-890
Thermal performance of a novel minichannel-based solar collector is investigated numerically. The particular collector consists of a U-shaped flat-tube absorber with a selective coating on its external surface. The working fluid flows inside an array of minichannels located in the cross-section of the absorber along its length. The absorber is enclosed in an evacuated-glass envelope to minimize convective losses. Performance and pressure drop are evaluated for different inlet temperatures and flow rates of the working fluid. Thermal performance of minichannel-based solar collector is compared to that of an evacuated tube collector without minichannels from the literature. Configurations with and without a concentrator are analyzed.  相似文献   

2.
Parabolic trough solar collector (PTSC) is one of the most proven technologies for large‐scale solar thermal power generation. Currently, the cost of power generation from PTSC is expensive as compared with conventional power generation. The capital/power generation cost can be reduced by increasing aperture sizes of the collector. However, increase in aperture of the collector leads to higher heat flux on the absorber surface and results in higher thermal gradient. Hence, the analysis of heat distribution from the absorber to heat transfer fluid (HTF) and within the absorber is essential to identify the possibilities of failure of the receiver. In this article, extensive heat transfer analysis (HTA) of the receiver is performed for various aperture diameter of a PTSC using commercially available computational fluid dynamics (CFD) software ANSYS Fluent 19.0. The numerical simulations of the receiver are performed to analyze the temperature distribution around the circumference of the absorber tube as well as along the length of tube, the rate of heat transfer from the absorber tube to the HTF, and heat losses from the receiver for various geometric and operating conditions such as collector aperture diameter, mass flow rate, heat loss coefficient (HLC), HTF, and its inlet temperature. It is observed that temperature gradient around the circumference of the absorber and heat losses from the receiver increases with collector aperture. The temperature gradient around the circumference of the absorber tube wall at 2 m length from the inlet are observed as 11, 37, 48, 74, and 129 K, respectively, for 2.5‐, 5‐, 5.77‐, 7.5‐, and 10‐m aperture diameter of PTSC at mass flow rate of 1.25 kg/s and inlet temperature of 300 K for therminol oil as HTF. To minimize the thermal gradient around the absorber circumference, HTFs with better heat transfer characteristics are explored such as molten salt, liquid sodium, and NaK78. Liquid sodium offers a significant reduction in temperature gradient as compared of other HTFs for all the aperture sizes of the collector. It is found that the temperature gradient around the circumference of the absorber tube wall at a length of 2 m is reduced to 4, 8, 10, 13, and 18 K, respectively, for the above‐mentioned mass flow rate with liquid sodium as HTF. The analyses are also performed for different HTF inlet temperature in order to study the behavior of the receiver. Based on the HTA, it is desired to have larger aperture parabolic trough collector to generate higher temperature from the solar field and reduce the capital cost. To achieve higher temperature and better performance of the receiver, HTF with good thermophysical properties may be preferable to minimize the heat losses and thermal gradient around the circumference of the absorber tube.  相似文献   

3.
Parabolic trough collectors are the most mature technology for utilizing the solar energy in high temperature applications. The objective of this study is the thermal efficiency enhancement of the commercial parabolic collector IST-PTC by increasing the convective heat transfer coefficient between the working fluid and the absorber. There are two main factors which influence on this parameter, the working fluid type and the absorber geometry. For this reason three working fluids are investigated, thermal oil, thermal oil with nanoparticles and pressurized water. Moreover, a dimpled absorber tube with sine geometry is tested because this shape increases the heat transfer surface and increases the turbulence in the flow. The final results show that these two techniques improve the heat transfer coefficient and the thermal efficiency of the collector. More specifically, the use of nanofluids increases the collector efficiency by 4.25% while the geometry improvement increases the efficiency by 4.55%. Furthermore, collector parameters such as the heat loss coefficient, the exergetic efficiency, the pressure losses and the absorber temperature are presented for all the examined cases. The model is designed with Solidworks and is simulated by its flow simulation studio.  相似文献   

4.
Evacuated CPC (compound parabolic concentrator) collectors with non-tracking reflectors are compared with two novel tracking collectors: a parabolic trough and an evacuated tube collector with integrated tracking reflector. Non-tracking low concentrating CPC collectors are mostly mounted in east–west direction with a latitude dependent slope angle. They are suitable at most for working temperatures up to 200–250 °C. We present a tracking evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5.7° at geometrical concentration ratio of 3.2. Losses of well constructed evacuated tube collectors (heat conductivity through the manifolds inside the thermally insulated terminating housing are low) are dominated by radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 350 °C. At temperatures of 300 °C we expect with anti-reflective coating of the glass tube and a selective absorber coating efficiencies of 0.65. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype, equipped with a standard glass tube and a black paint absorber coating, was tested at ZAE Bayern. The optical efficiency was measured to be 0.71. This tube-collector is compared by ray-tracing with non-tracking market available tube-collectors with geometrical concentration ratios up to 1.1 and with a low cost parabolic trough collector of Industrial Solar Technology (IST) with an acceptance half angle about 1.5°, a geometrical concentration ratio of 14.4 and a measured optical efficiency of 0.69.  相似文献   

5.
A concentrated solar absorber with finned phase change materials was experimentally studied using a Scheffler type parabolic dish concentrator. The absorber's inner surface was fixed with hollow cylindrical containers filled with phase change material (PCM) for heat transfer augmentation. The absorber's selected PCM was acetanilide (Melting point of 116 °C)—the cylindrical capsules protruding into the fluid side to create turbulence and mixing and acting as fins. The absorber surface temperature was observed to be about 130–150 °C during the outdoor tests while passing fluid through the absorber. The fluid flow rate varied from 60 to 100 kg/h during the outdoor experiments. The peak energy and exergy efficiency of parabolic dish collector (PDC) at the fluid flow rate of 80 kg/h with PCM integrated solar absorber was found to be about 67.88% and 6.96%, respectively. The integration of cylindrical PCM containers resulted in more heat transfer augmentation in the solar absorbers. The optimized solar absorber could be suitable for various applications like steam generation, biomass gasification, space heating, and hydrogen generation.  相似文献   

6.
Modelling of parabolic trough direct steam generation solar collectors   总被引:2,自引:0,他引:2  
Solar electric generation systems (SEGS) currently in operation are based on parabolic trough solar collectors using synthetic oil heat transfer fluid in the collector loop to transfer thermal energy to a Rankine cycle turbine via a heat exchanger. To improve performance and reduce costs direct steam generation in the collector has been proposed. In this paper the efficiency of parabolic trough collectors is determined for operation with synthetic oil (current SEGS plants) and water (future proposal) as the working fluids. The thermal performance of a trough collector using Syltherm 800 oil as the working fluid has been measured at Sandia National Laboratory and is used in this study to develop a model of the thermal losses from the collector. The model is based on absorber wall temperature rather than fluid bulk temperature so it can be used to predict the performance of the collector with any working fluid. The effects of absorber emissivity and internal working fluid convection effects are evaluated. An efficiency equation for trough collectors is developed and used in a simulation model to evaluate the performance of direct steam generation collectors for different radiation conditions and different absorber tube sizes. Phase change in the direct steam generation collector is accounted for by separate analysis of the liquid, boiling and dry steam zones.  相似文献   

7.
In order to cope up with the increase in energy demand and decline in fossil fuels, it has become imperative to use renewable resources efficiently. Among these renewable resources, solar thermal energy is abundant in nature. Solar water heating systems are one of the most important applications of solar thermal energy. Providing internal fins to absorber tube is the technique to improve heat transfer augmentation. Hence in the present study, experiments were performed on solar flat plate collector with different cross section of absorber tubes (plain tube and internally grooved tubes with different helix angles) and by varying the mass flow rates of the working fluids. This study reports the experimental results of flat plate collector, where the working fluid is water and aqueous ethylene glycol (50 : 50). Temperature profile of grooved absorber tube will be compared with plain tube. Since conversion efficiency of solar devices is low, the present study mainly focuses on improving the efficiency of solar flat plate collector.  相似文献   

8.
Non-concentrated evacuated tube heat pipe solar collectors have been reported to show higher fluid temperatures with improved thermal performance in the low to medium temperature range (?60 °C) due to low heat losses but suffer higher heat losses at the medium to higher temperature range (?80 °C) which reduces their efficiency compared to concentrated evacuated tube heat pipe solar collectors. To operate as stand-alone systems capable of attaining temperatures in the range of 70-120 °C, an innovative concentrator augmented solar collector can be an attractive option. The performance of a combined low-concentrator augmented solar collector in an array of evacuated tube heat pipe solar collectors defined as concentrator augmented evacuated tube heat pipe array (CAETHPA) and an array of evacuated tube heat pipe collectors (ETHPC) were tested and compared and results presented in this paper. The analysis of the experimental data allows concluding that the use of a CAETHPA is a more efficient alternative for integrating renewable energy into buildings with higher fluid temperature response, energy collection and lower heat loss coefficient compared to the use of evacuated tube heat pipe collector array (ETHPA).  相似文献   

9.
An experimental investigation of an inverted absorber integrated collector storage solar water heater mounted in the tertiary cavity of a compound parabolic concentrator with a secondary cylindrical reflector has been performed under simulated solar conditions. The solar water heaters performance was determined with the aperture parallel to the simulator for a range of transparent baffles positioned at different locations within the collector cavity. Results indicate that glass baffles located at the upper portion of the exit aperture of the CPC can reduce thermal losses through convection suppression without significantly increasing optical losses.  相似文献   

10.
Criteria are presented for optimizing solar thermal energy collection. These criteria are then used in setting the design of a fixed solar thermal energy collector. This design is obtained by proceeding carefully through a series of optimization steps. While seeking near optimum performance, features have been retained which should lead to low cost. Initial optimization steps lead to an all glass vacuum collector tube whose side and lower walls are internally silvered to provide optimal Winston concentration on an interior glass tube coated with a selective absorber. Heat transfer calculations, performed for an array module of these collector tubes, produce values for the radiation, heat conduction and pumping losses and indicate operating conditions which minimize these losses. Near this minimum, heat conduction and pumping losses are small and can usually be neglected. Liquids provide much better heat transfer than gases. For liquid heat transfer fluids, the minimum loss collector tube window width (setting the transverse scale) is 3 cm and tube length 4 m, depending somewhat upon array area and the weighting used for the various losses. A window width of5 cm and tube length2 m should provide lower cost fabrication, while still allowing operation near minimum loss. Skills now used in the glass and lighting industry are expected to lead to low cost production of these tubes.  相似文献   

11.
Criteria are presented for optimizing solar thermal energy collection. These criteria are then used in setting the design of a fixed solar thermal energy collector. This design is obtained by proceeding carefully through a series of optimization steps. While seeking near optimum performance, features have been retained which should lead to low cost. Initial optimization steps lead to an all glass vacuum collector tube whose side and lower walls are internally silvered to provide optimal Winston concentration on an interior glass tube coated with a selective absorber. Heat transfer calculations, performed for an array module of these collector tubes, produce values for the radiation, heat conduction and pumping losses and indicate operating conditions which minimize these losses. Near this minimum, heat conduction and pumping losses are small and can usually be neglected. Liquids provide much better heat transfer than gases. For liquid heat transfer fluids, the minimum loss collector tube window width (setting the transverse scale) is ~3 cm and tube length ~4 m, depending somewhat upon array area and the weighting used for the various losses. A window width of~5 cm and tube length~2 m should provide lower cost fabrication, while still allowing operation near minimum loss. Skills now used in the glass and lighting industry are expected to lead to low cost production of these tubes.  相似文献   

12.
Yong Kim  Taebeom Seo   《Renewable Energy》2007,32(5):772-795
The thermal performance of a glass evacuated tube solar collector is numerically and experimentally investigated. The solar collector considered in this paper consists of a two-layered glass tube and an absorber tube. Air is used as the working fluid. The length and diameter of this glass tube are 1200 and 37 mm, respectively. Four different shapes of absorber tubes are considered, and the performances of the solar collectors are studied to find the best shape of the absorber tube for the solar collector. Beam irradiation, diffuse irradiation, and shade due to adjacent tubes are taken into account for a collector model to obtain a realistic estimation. In addition, a single collector tube with only beam irradiation is studied as a simplified model, and the results of the simplified model are compared to those of the collector model to identify the difference between these two models. The performance of a solar collector is affected by the shape of the absorber, incidence angle of solar irradiation, and arrangement of collector tubes. The results obtained from the simplified model are very different from those from the collector model, which considered not only beam and diffuse irradiation but also shade due to adjacent tubes.  相似文献   

13.
DSG太阳能槽式集热器的热性能研究   总被引:1,自引:1,他引:0  
采用数值计算的方法分别对稳态条件下直接产生蒸汽(DSG)太阳能槽式集热管中单相水区、饱和相区和干蒸汽相区的吸收管温度沿周向的分布进行了研究,在此基础上建立了集热器热损模型,并分析了流体温度、质量流量及工作压力对集热管中不同相区热损的影响.结果表明:影响集热器热损的关键因素是流体温度,随着流体与环境温差的增大,集热管中各相区的热损增加;流体的质量流量和工作压力对集热器热损的影响不大.  相似文献   

14.
The solar energy flux distribution on the outer wall of the inner absorber tube of a parabolic solar collector receiver is calculated successfully by adopting the Monte Carlo Ray-Trace Method (MCRT Method). It is revealed that the non-uniformity of the solar energy flux distribution is very large. Three-dimensional numerical simulation of coupled heat transfer characteristics in the receiver tube is calculated and analyzed by combining the MCRT Method and the FLUENT software, in which the heat transfer fluid and physical model are Syltherm 800 liquid oil and LS2 parabolic solar collector from the testing experiment of Dudley et al., respectively. Temperature-dependent properties of the oil and thermal radiation between the inner absorber tube and the outer glass cover tube are also taken into account. Comparing with test results from three typical testing conditions, the average difference is within 2%. And then the mechanism of the coupled heat transfer in the receiver tube is further studied.  相似文献   

15.
The evacuated tube collector with U shape copper absorber tube is considered for the analysis. The experimental investigation is conducted on parabolic trough collector with U shape tube as absorber tube. The effect of the sudden fluctuations in the solar radiation on the performance of the collector is reduced by means of evacuated tube collector filled with thermic fluids. The analysis is performed with different thermic fluids such as dowtherm, therminol66, glycol water and ethylene glycol, are filled in the annular space between inner glass tube and U shape copper absorber tube. The experimentation is carried out at various mass flow rates from 20 to 100 LPH with the step-up flow rate of 20 LPH. A comparative study is carried out on various parameters such as effect of mass flow rate over instantaneous efficiency, useful heat gain and work input, etc. The characteristic curve of cylindrical parabolic trough collector (PTC) is also discussed. Experimental results show that, ethylene glycol gives better efficiency over mass flow rate and therminol66 gives best power heat ratio. Heat transfer mediums and its properties [specific heat capacity, thermal conductivity and dynamic viscosity] for all specified heat transfer fluids are also discussed. The results obtained with various specified heat transfer fluids filled in the annulus space of evacuated tube are compared with plain evacuated tube. It is observed that there is significant enhancement of overall instantaneous collection efficiency of the parabolic trough collector.  相似文献   

16.
A novel hybrid PVT/parabolic trough concentrator (PTC)/organic Rankine cycle (ORC) solar power system integrated with underground heat exchanger has been proposed. The evaporator unit consists of a transparent flat PVT solar collector and a PTC connected in series. The first transparent solar collector has transparent covers and consists of solar cells totally immersed within a pressurized transparent organic fluid that allows the solar radiation to reach the solar cells, cools them effectively, and captures all thermal losses from the solar cells. The second concentrator is a conventional one with opaque black receiver used to reheat the transparent organic fluid to higher temperatures. Both solar collectors (the PVT and PTC) perform as the boiler and superheater for the ORC. The performance of the proposed system is investigated by a steady‐state mathematical model. The results show that, at design conditions, the efficiency of the PV modules stabilizes around 12%, absorber efficiency varies within 64% to 75%, and the ORC efficiency varies within 7% to 17%.  相似文献   

17.
Details of the design and development of an inexpensive solar collector system which does not make use of a blackened metal plate as an absorber are given in this paper. A spiral-shaped plastic tube coated with a black paint constitutes the solar absorber. Unlike other flat plate collectors, the working fluid moves through a spiral path in this collector. As the liquid moves progressively towards the centre, its temperature gradually rises and in the process it absorbs a part of the heat transferred radially from the centre of the collector, thus reducing heat losses.  相似文献   

18.
Javier Muñoz 《Solar Energy》2011,85(3):609-612
The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.  相似文献   

19.
Ruobing Liang  Dan Zhao 《Solar Energy》2011,85(9):1735-1744
The filled-type evacuated tube with U-tube, in which the filled layer is used to transfer energy absorbed by the working fluid flowing in the U-tube, is proposed to eliminate the influence of thermal resistance between the absorber tube and the copper fin of the conventional evacuated solar collector. In this paper, the thermal performance of the filled-type evacuated tube with U-tube was researched by means of theoretical analysis and experimental study. The temperature of the working fluid in the flow direction was obtained, and the efficiency of the evacuated tube was also calculated, based on the energy balance equations for the working fluid in the U-tube. The effects of the heat loss coefficient and the thermal conductivity of the filled layer on the thermal performance of the evacuated tube were studied. In addition, the test setup of the thermal performance of the filled-type evacuated tube with U-tube was established. The evacuated tube considered in this study was a two-layered glass evacuated tube, and the absorber film was deposited in the outer surface of the absorber tube. The results show that the filled-type evacuated tube with U-tube has a favourable thermal performance. When the thermal conductivity of the heat transmission component is λc = 100, the efficiency of the filled-type evacuated tube with U-tube is 12% higher than that of the U-tube evacuated tube with a copper fin. The modelling predictions were validated using experimental data which show that there is a good concurrence between the measured and predicted results.  相似文献   

20.
This study presents numerical computation results on turbulent flow and coupled heat transfer enhancement in a novel parabolic trough solar absorber tube, the unilateral milt-longitudinal vortexes enhanced parabolic trough solar receiver (UMLVE-PTR), where longitudinal vortex generators (LVGs) are only located on the side of the absorber tube with concentrated solar radiation (CSR). The novel absorber tube and the corresponding parabolic trough receiver with smooth absorber tube (SAT-PTR) are numerical studied by combining the finite volume method (FVM) and the Monte Carlo ray-trace (MCRT) method for comparison and verification from the viewpoint of field synergy principle (FSP). Then the effects of Reynolds number, heat transfer fluid (HTF) inlet temperature, incident solar radiation and LVG geometric parameters were further examined. It was found that the mechanism of heat transfer enhancement of this novel absorber tube can be explained very well by the field synergy principle, and that the proposed novel UMLVE-PTR has good comprehensive heat transfer performance than that of the SAT-PTR within a wide range of major influence factors of diverse working conditions and geometric parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号