首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article examines the exhaust waste heat recovery potential of a microturbine (MT) using an organic Rankine cycle (ORC). Possible improvements in electric and exergy efficiencies as well as specific emissions by recovering waste heat from the MT exhaust gases are determined. Different dry organic working fluids are considered during the evaluation (R113, R123, R245fa, and R236fa). In general, it has been found that the use of an ORC to recover waste heat from MTs improves the combined electric and exergy efficiencies for all the evaluated fluids, obtaining increases of an average of 27% when the ORC was operated using R113 as the working fluid. It has also been found that higher ORC evaporator effectiveness values correspond to lower pinch point temperature differences and higher exergy efficiencies. Three different MT sizes were evaluated, and the results indicate that the energetic and exergetic performance as well as the reduction of specific emissions of a combined MT‐ORC is better for small MT power outputs than for larger MTs. This article also shows how the electric efficiency can be used to ascertain under which circumstances the use of a combined MT‐ORC will result in better cost, primary energy consumption, or emission reduction when compared with buying electricity directly from electric utilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
基于燃煤电厂烟气低温余热资源,采用ORC(有机朗肯循环)设计发电系统,选择3种有机工质(R245fa、R600a和R601a),分析了该系统的热力学性能及技术经济性,并计算了该系统的节能减排效益。结果表明:工质的临界温度越低,系统的净输出功率越大;在计算排烟温度范围内(60~110℃),系统净输出功率先增大后减小,而发电效率随排烟温度升高而增大;采用ORC发电技术回收低温余热,节能减排效果显著。研究结果对ORC发电技术的工程应用具有一定的指导意义。  相似文献   

3.
介绍国内低温余热应用情况,分析并比较了国内外常用的低温余热回收技术。分布式能源系统是我国能源"十一五"规划中明确指出应予以发展的能源系统,根据"温度对口、梯级利用"的原则,研究了低温余热回收技术在分布式能源系统中的应用。  相似文献   

4.
为了提高尾气余热利用率并削弱热源波动对有机朗肯循环的影响,提出了一种集成相变储热换热器的有机朗肯循环(organic Rankine cycle,ORC)系统,利用相变材料削弱尾气余热波动并储存热量。搭建了内燃机尾气余热直接驱动的储热式有机朗肯循环试验台架,开展了内燃机稳态工况和阶跃变工况下储热式有机朗肯循环的热力学性能和动态性能试验研究。结果表明,内燃机稳态工况下尾气平均温度和平均流量为342℃和0.142kg/s,蒸发压力为0.75MPa条件下储热式ORC系统平均输出功率约3.43kW,平均热效率可达到12.7%,平均尾气余热回收率可达40.1%。内燃机阶跃工况下,工质出口温度、蒸发压力和过热度均呈现快速下降的趋势。试验结果还表明储热式ORC具备完全抵御发动机工况小幅波动的能力。在发动机工况阶跃变化比例过大时,储热换热器可以实现对尾气的补热,从而延长储热式ORC的安全工作时间。  相似文献   

5.
The analysis of a subcritical Rankine cycle with superheating, operating between a constant flowrate low‐temperature heat source and a fixed temperature sink, according to the principles of classical and finite size thermodynamics, is presented. The results show the existence of two optimum evaporation pressures: one minimizes the total thermal conductance of the two heat exchangers, whereas the other maximizes the net power output. A comparison of such results for five working fluids leads to the selection of R141b for a system generating 10% of a reference power which depends on the specified source and sink characteristics; for the conditions under consideration this reference power is 6861 kW. The results for this particular system show that the minimum total thermal conductance of the two heat exchangers is 1581 kW K?1; the corresponding thermal efficiency is 12.6% and the total exergy losses are 13.8% of the source's exergy. Slightly more than 50% of the exergy destruction occurs in the vapor generator. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The recent energy crisis forces engineers to take into account reduction of electricity consumption as well as heat energy consumption in industry. As it is very difficult to save the amount of electricity, they have tried to recover electric power using waste heat energies. In this paper, the possibilities of electric power recovery from waste heat energies are discussed based on the relationship between supply heat sources and demand heat sources in chemical process systems. In solving such problems, the following difficulties appear: calculation of maximum quantity of generated electric power, determination of a suitable working fluid and its temperatures in the Rankine cycle, and so on. The proposed method can solve them using the temperature-enthalpy diagram and, furthermore, has the advantage of being able to design a final heat exchanger network with heat exchangers in a power plant by means of a synthesis method using the same diagram.  相似文献   

7.
Distributed power generation is gaining attention as a solution for the transmission loss and site selection in centralized power generation. Polymer-electrolyte membrane fuel cells (PEMFCs) are suitable as a distributed power source for residential areas because of their high efficiency and low environmental impact. This study proposes a combined power generation system for recovering waste heat from both the cell stack and the reformer of a PEMFC by applying an organic Rankine cycle (ORC). The best working fluid with the highest ORC power output (i.e., the highest combined system efficiency) was identified through a parametric study of different working fluids. An economic analysis was also performed for different working fluids, waste heat sources, and types of system operation. The results show that the installation cost of the ORC can be recovered within the fuel cell's lifetime in all design cases. Greater cumulative profit can be generated by maintaining the same power output as the stand-alone PEMFC system for greater efficiency than when increasing the power output to sell surplus power. The results demonstrate that the optimal heat recovery from the PEMFC system is both thermodynamically and economically beneficial.  相似文献   

8.
构建有机朗肯循环变工况分析模型,研究热源条件对系统变工况性能的影响规律。结果表明:随着热源温度升高,系统的最佳蒸发压力线性增大,而涡旋膨胀机的等熵效率逐渐减小。相比额定工况,热源温度变化-30.0K与30.0K时,净输出功率变化了-32.4%与18.4%,热效率降低了4.0%与11.4%,热回收效率变化幅度分别为-9.8%及8.9%;当热源温度从423增大至483K时,系统不可逆损失的变化率为-37.1%与45.5%,火用效率的变化率为6.7%与-17.5%。相比热源流量,热源温度对系统变工况性能的影响更大。  相似文献   

9.
An important method to increase the efficiency of thermal power plants is to recover the exhaust gas heat at the boiler cold‐end with the stepwise integration of a steam turbine heat regenerative system. To this end, there are currently three typical heat recovery processes, that is, a low‐temperature economizer (LTE), segmented air heating (SAH) and bypass flue (BPF). To provide useful guidance to thermal power plants for optimal and efficient processes, the thermal economy and techno‐economic performance of the three aforementioned processes were calculated and compared using an in‐service 600‐MW hard‐coal‐fired ultra‐supercritical power unit as a reference. The results demonstrate that with the use of the LTE, SAH and BPF, respectively, to recover the exhaust heat, reducing the exhaust temperature from 122 °C to 90 °C, the net standard coal consumption rate of the 600‐MW unit can be reduced by 1.51, 1.71 and 2.81 g/(kW h). The initial costs of the three heat recovery projects are 1.69, 2.91 and 2.53 million USD. If the 600‐MW unit runs 5500 h per year at the rated load, the three processes can increase the earnings of the unit by 0.49, 0.52 and 0.94 million USD from coal savings annually, meaning that their dynamic payback periods are 4.42, 8.66 and 3.29 years, respectively. The results indicate that for a hard‐coal‐fired power unit, the coal savings achieved by exhaust heat recovery are notable. Among the three processes, SAH shows the worst techno‐economic performance because it induces a significant increase in initial costs while obtaining a limited increase in thermal economy, while BPF exhibits the best techno‐economic performance owing to the significant increase in thermal economy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Conversion of low‐grade heat to high‐quality energy such as electricity using the Rankine cycle poses serious challenges. When such conversion is possible, it is invariably expensive or unacceptable due to environmental concerns associated with the working medium. The low‐grade heat can either be from exhaust systems or from solar radiation. Thus, the topic addresses a very useful subject, combining energy efficiency and renewable energy. Although high‐grade heat recovery and energy conversion is a mature technology widely covered by the literature, low‐grade energy conversion, especially using thermodynamic cycles, has not been sufficiently addressed to date. This paper addresses the feasibility of a low‐grade heat‐driven Rankine cycle to produce power using a scroll expander, a low toxicity, low flammability, and ozone‐neutral working fluid. A cost benefit analysis of the recommended system shows that it is a viable option for solar power generation, at about one‐third the cost of a comparable photovoltaic system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a 1 kW ORC experimental system is built. Using R123 as the working fluid, transient responses of Basic ORC (BORC) and ORC with a regenerator (RORC) are both tested under critical conditions. A total of four experiments are carried out, including: (1) Case 1: the working fluid pump is suddenly shut down; (2) Case 2: the working fluid is overfilled or underfilled; (3) Case 3: the torque of the expander is suddenly loss. (4) Case 4: the cooling water pump is suddenly shut down. All the major quantities such as the output power and torque of the expander, temperatures and pressures at the inlet and outlet of the expander, temperatures at the inlet and outlet of the condenser are measured. The transient responses of the two systems under the controlled critical conditions are tested and compared, some physical explanations are provided. It is found that RORC is more stable than BORC because of the regenerator. Regenerator should act as a “pre-heater” or “pre-cooler” under the critical conditions thus improving the stability of RORC. When the working fluid in the system is underfilled or leaked, the system performance is extremely unstable. Otherwise, when the working fluid is overfilled, the trend of the curves are similar to the optimal working condition but with weaker performances. We also find that if the working fluid pump is shut down when working fluid is overfilled, the rotation speed and shaft power output of the expander will increase significantly, the unique phenomenon can be used to estimate whether the working fluid in the system is overfilled.  相似文献   

12.
The process flow schematic of fuel‐consuming equipment with thermochemical waste‐heat recuperation by steam methane reforming with an addition of flue gas to the reaction mixture is suggested. The advantages of such a thermochemical recuperation (TCR) system compared with the TCR system by steam methane reforming are shown and justified. Based on the first law energy analysis, the heat inputs and outputs of the TCR system were determined. To determine the exhaust gases heat transformed into chemical energy of a new synthetic fuel, the thermodynamic analysis by minimizing Gibbs energy via Aspen HYSYS was performed. It was found that with an increase in the mole fraction of combustion products in the reaction mixture, the enthalpy of the methane reforming reaction increases, especially noticeable at the temperature range above 1000 K. Based on the heat, balance of the TCR system was established that the addition of combustion products to the reaction mixture has the following effects: reducing the heat input for steam production in a steam generator; reduction of the steam generator size because of the need to produce a smaller amount of steam in comparison with TCR by pure steam methane reforming; and reducing the amount of heat transferred through the wall of the reformer and, as a consequence, reduction in size of the reformer.  相似文献   

13.
采用低沸点双工质有机朗肯循环余热发电系统来回收钢铁生产过程中产生的的低品位余热。本文阐述目前我国低温余热回收状况,介绍有机工质的物理性质、化学性质、热力学性质等,分析运用朗肯循环余热发电的经济性和解决低沸点双工质发电系统的关键技术,结合实际工程经验对该系统进行分析。  相似文献   

14.
This research work deals with the optimisation of controllable parameters of the organic Rankine cycle (ORC) run by waste heat. Performance measures have been evaluated for different waste heat temperatures, condenser temperatures, refrigerants and mass flow rate. The design of experiment was performed on the L9 orthogonal array of Taguchi's method. Three performance measures such as thermal efficiency, exergy destruction rate and the work output were used for the assessment and optimisation of the cycle. An optimum combination of parameters obtained by Taguchi's method is compared with analytical results. The comparison suggests that the variance of results is within the desired level of confidence. Individual effect of parameters on the performance of ORC is also estimated using analysis of variance. Turbine inlet temperature has large effects on efficiency and work output. Mass flow rate of the refrigerant has the largest effect on the exergy destruction rate.  相似文献   

15.
Increased utilization of industrial excess heat (or waste heat) can reduce primary energy use and thereby contribute to reaching energy and climate targets. To estimate the potential availability of industrial excess heat, it is necessary to capture the significant heterogeneity of the industrial sector. This requires the development of methodologies based on case study assessments of individual plants, adopting a systematic approach and consistent assumptions. Since the recovery of excess heat for power generation or off‐site delivery competes with internal recovery for on‐site fuel savings, a well‐founded approach should enable a comparison of the excess heat availability at different levels of internal process heat recovery. To determine the best solution for excess heat utilization for a given process, there is a need for easy screening of various options, while considering that some techniques require heat at a constant temperature while others can exploit a nonisothermal heat supply. This paper presents a new tool, the excess heat temperature (XHT) signature, for exploring the potential heat availability and trade‐offs for excess heat utilization by weighting the heat according to predefined temperature levels and ranges. A set of reference conditions are defined, and an energy targeting approach is proposed that can be used for characterizing the Theoretical XHT signature, which represents the unavoidable excess heat that can be recovered after maximized internal process heat recovery and ideal integration of a power generation steam cycle. The Theoretical XHT signature is contrasted with the Process Cooling XHT signature, which represents the excess heat that can be recovered given the current design and operation of the process and its utility system. The XHT signature curves provide a consistent representation of the excess heat, enabling comparison between sites and aggregation of results from different case studies.  相似文献   

16.
A three‐effect heat pipe (heat pipe heating, heat pipe cooling and heat pipe heat recovery) adsorption refrigeration system using compound adsorbent (calcium chloride and activated carbon) was designed. The dynamic characteristics of mass and heat pipe heat recovery were studied. The results show that mass recovery and heat pipe heat recovery can improve (specific cooling power) SCP and (coefficient of performance) COP greatly. The averaged SCP of the cycle with mass recovery and the cycle without mass recovery is 502.9 W/kg and 436.7 W/kg at about 30 °C of cooling water temperature and ?15 °C of evaporating temperature. The corresponding COP is 0.27 and 0.24 respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes a new pumpless Rankine-type cycle for power generation from low-temperature heat sources. The new cycle mainly consists of an expander, two heat exchangers, and switching valves for the expander and heat exchangers. Instead of using a working fluid pump, the switching valves method (SVM) is employed to control the cycle. The SVM makes each heat exchanger switch between functioning as an evaporator and functioning as a condenser. In this arrangement, the working fluid flows back and forth between the two heat exchangers without a working fluid pump. Therefore, the new cycle does not involve problems caused by a pump. In the first basic experiment carried out to clarify the feasibility of the proposed cycle, the function of the expander was emulated by using an expansion nozzle. HFC245fa was used as the working fluid. The experimental results confirm that the proposed cycle works and that it has the potential to produce power. Fundamental time-varying characteristics of the proposed cycle are also shown and discussed.  相似文献   

18.
The coexistence of different kinds of waste heat sources on marine vessels with various temperature ranges increases the need for an optimal heat exchanger network (HEN) design for the heat collection process to reduce the unutilizable heat that needs to be discharged to overboard. The optimal HEN design has not been taken into consideration by using pinch point analysis in previous studies of marine organic Rankine cycle (ORC) systems that utilize from different kinds of waste heat sources. The objective of the study is to determine the optimal HEN design for an ORC integrated waste heat recovery system of a marine vessel by utilizing the pinch point analysis to improve the overall energy efficiency. Lubricating oil, high-temperature cooling water and scavenge air of the main engine, and the exhaust gas emitted from the boiler plant were identified as the major waste heat sources of a reference container ship. A heat collection stream, in which thermal oil is used as the heat transfer fluid that transfers the collected heat to an ORC system, was proposed. The pinch point analysis showed that the optimum waste heat recovery could be gained by separating the scavenge air cooler into three stages and the lubricating oil cooler into two stages. The results of the parametric study for the varying evaporator inlet pressure between 1000 and 3000 kPa showed that R1234ze(Z) yields the best performance among nine different organic working fluids with the thermal efficiency and exergy efficiency of 15.24% and 86.47% for the ORC system, respectively. For the proposed configuration, the unavailable waste heat that cannot be transferred to thermal oil was found as 23.71%, 16.56%, 13.17%, and 7.81% of the total waste heat produced by the heat sources, and also 8.24%, 9.80%, 11.55%, and 12.93% of the net power output produced by the main engine can be recovered for 25%, 50%, 76%, and 100% maximum continuous rating (MCR), respectively.  相似文献   

19.
The energy‐saving effect and economic benefits of a thermosyphon heat recovery unit installed in a shopping mall are investigated. To evaluate the thermal performance of the heat recovery unit in a season, a seasonal temperature effectiveness is advanced, and its calculation formula is deduced referring to the calculation method of seasonal energy efficiency ratio (SEER) for an air conditioner. The annual operating energy‐saving effect of the unit is analyzed by using the seasonal temperature effectiveness while the static economic evaluation method is applied for the economic benefits analysis of the unit. The analysis results indicate the seasonal temperature effectiveness of the unit is 66.08% in the winter and 55.43% in the summer. The energy‐saving effect of the unit is quite remarkable, and the payback time is about 2.65 years. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21049  相似文献   

20.
《国际能源研究杂志》2017,41(7):952-975
There are many low‐temperature heat sources; however, current technologies for their utilization have a relatively low efficiency and high cost. The leading technology in the low‐temperature domain for heat‐to‐work conversion is the organic Rankine cycle (ORC). Absorption power cycles (APCs) are a second option. Nearly all currently known APCs, most importantly the Kalina cycle, use a water‐ammonia mixture as their working fluids. This paper offers a theoretical exploration of the possibility of utilizing aqueous solutions of three salts (lithium bromide, lithium chloride and calcium chloride), known mainly from absorption cooling, as working fluids for APCs. The cycles are compared with a typical steam Rankine cycle, a water‐ammonia APC, and (subcritical) ORCs with a range of working fluids explored. The analysis includes a parasitic load for heat rejection by a cooling tower or air‐cooled condenser. The absorption cycles exhibit better performance than all Rankine‐based cycles analysed in temperatures below 120°C. For the LiBr‐based APC, a detailed thermal design of the cycle is provided for 100°C water as a heat source and a sensitivity analysis is performed of the parameters controlling the main cycle. Mechanical design considerations should not pose a problem for small power units, especially in the case of expansion machines, which are often problematic in ORCs. The salt‐based APCs also carry environmental benefits, as the salts utilized in the working fluids are non‐toxic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号