首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The current research is focused on the hydrogen production through a two‐step ZnO/Zn thermochemical water splitting cycle. In the present paper, numerical modeling of the second step is conducted using Computational Fluid Dynamics (CFD)2, where steam reacts with zinc to produce hydrogen. The parametric study shows that the hydrogen yield is relatively insensitive to the steam/zinc molar ratio and inversely proportional to the argon/steam molar ratio. For large argon to steam molar ratios, hydrogen yield is relatively insensitive to the inlet temperature of zinc and steam, and increases marginally with an increase in the argon inlet temperature. Five different reactor configurations were evaluated comprehensively. Among all configurations, a cylindrical reactor with a tangential inlet for argon and zinc, and a radial inlet for steam (both in the bottom plane of the reactor) and a tangential outlet in the top plane of the reactor produced the highest hydrogen yield of 88%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrogen production by the two-step solar thermochemical cycle has high cycle efficiency, low cost, and a great development space. Of special interest is the solar thermochemical cycle based on ZnO/Zn redox reactions since its high theoretical hydrogen yield and relatively low endothermic reaction temperature. In this paper, a steady heat transfer model for thermal ZnO dissociation in a solar thermochemical reactor is developed, coupling conduction, convection and radiation with chemical reaction. Accuracy was evaluated by comparison of results obtained from other references. Based on the new proposed reactor, the model is adopted to analyze the operating parameter effect on the conversion rate and fluid feature inside the solar reactor. The results show that the mass flow rate of ZnO and aperture gas temperature have a positive relation with ZnO conversion rate, however, the diameter of particles and aperture gas velocity has an inverse relation with ZnO conversion rate under specific condition. The results will provide useful foundation for improving the solar-to-fuel conversion rate in the near future.  相似文献   

3.
This paper presents preliminary results of an integrated hydrolysis reactor at the Clean Energy Research Laboratory (CERL), University of Ontario Institute of Technology. Initial tests have demonstrated a successful reactor design allowing for effective recovery of liquid products. Using our best available performance metrics, the conversion rate of reagents to products ranged from 7% to 10%. Initial experimental runs demonstrated that the reactor was successfully operational with combined H2O and reagent injection in a configuration suitable for integration with the electrolysis step of the Copper-Chlorine loop. In this paper, we discuss the updated hydrolysis reactor design and present data from a number of recent experiments in which our research team recovered solids and chemical products not previously collected in prior studies. Comparisons were made with earlier XRD data taken at the Argonne National Laboratory. The comparisons showed promising results in the chemical composition of the solids produced. We conclude this paper with a discussion of future experiments to increase the conversion rate of reaction based on the observed trends.  相似文献   

4.
The hydrolysis step of the Zn/ZnO thermochemical cycle for hydrogen production is experimentally investigated in a laboratory-scale tube-reactor. The current work uses a new approach in which the heterogeneous oxidation of gaseous Zn with steam is carried out under a negative axial temperature gradient in order to improve cycle efficiency by reducing the proportion of steam and inert carrier gas used. It is shown that complete conversion of Zn to ZnO is possible at steam-to-Zn stoichiometries greater than 5.0. As the steam-to-Zn stoichiometry approaches unity at reduced inert gas fractions, condensation of Zn on the reactor walls becomes more likely. In addition, the observed gas-phase equilibrium shift toward increased production of ZnO at temperatures under 800 K is consistent with earlier theoretical predictions. While complete conversion with low inert gas and steam usage was not achieved, our approach shows great improvement over previous aerosol-based approaches when considering the total amounts of steam and inert gas used per unit of hydrogen produced. Therefore, the current temperature gradient approach is promising for the design of an efficient reactor for water splitting via Zn vapor.  相似文献   

5.
A catalytic reactor to generate hydrogen with a large conversion efficiency and a stable rate of generation is based on a π-shaped design that decreases the effect of hydrogen on the catalyst surface so as to increase the opportunities for contact between sodium borohydride (NaBH4) and the catalyst. This novel design is tested in terms of the effect of its rate of volumetric flow, position of catalyst, angle of flow channel, ratio of areas of gas channel and flow channel, and ratio of widths of gas channel and flow channel, on the efficiency of chemical conversion and the stability of hydrogen generation. We compare this efficiency and stability with the corresponding properties of a conventional reactor. The results indicate that placing the catalyst at the back of the flow channel provided uninterrupted space for liquid and gas at the front end, thereby improving the sustainability of the sodium borohydride for the catalytic reaction. An increased angle of the flow channel improved the capability of bubbles to escape from the surface of the catalyst, which, when appropriately designed, increased the efficiency by 13.4%. The increased rate of volume flow of sodium borohydride resulted in a decreased duration of contact between sodium borohydride and the catalyst, thereby decreasing the conversion efficiency. When the rate of volume flow of sodium borohydride was 0.5–2.0 mL/min, the effect of ratios of area and widths of gas channel to flow channel on the overall conversion efficiency followed no significant pattern. A comprehensive comparison between a conventional reactor and this new gas-flow channel-based reactor showed that, when appropriately designed, the new reactors can increase the efficiency of chemical conversion from 69.7% to 90.2%, with a decreased amplitude of hydrogen generation from 250% to 42.9%.  相似文献   

6.
Methane decomposition into hydrogen and carbon is analyzed in a plasma reactor, with a rotating arc and different cross-sectional areas for the passing gas. This novel setup helps the arc discharge to sweep a larger fraction of the reactant which could cause a better interaction of methane molecules with plasma phase causing higher conversions. The effects of angular velocity of arc discharge, feed flow rate, and cross-sectional area for the passing gas were investigated on the reactor performance. Methane conversion increased significantly by changing the arc mode from stationary to rotating. Increasing the cross-sectional area for the passing gas causes conversion drop for stationary arc whereas a slight increase in conversion is observed for rotating arc mode. Hydrogen production rate of 100 ml/min with an energy yield of 26.8 g/kWh achieved at a methane flow rate of 150 ml/min. The residence time is estimated to be 0.2–3.9 s in the range of the present study, which is a much longer period compared to the plasma process time. Therefore, it is suggested that the mass transfer rate between the gas and plasma phase is the controlling factor for methane conversion. In this respect, an apparent reaction rate constant is derived by considering methane conversion as that fraction of gas, which is exposed to the active area of the plasma arc column.  相似文献   

7.
An experimental study of the catalytic combustion of hydrogen in air at 1 atm has been conducted for laminar and turbulent flows in an annular reactor. The reactor comprises a small-diameter inner cylinder and an outer cylinder of platinized alumina. Measurements of the overall rate of combustion have been made wherein the inner cylinder is maintained at a positive d.c. potential with respect to the outer cylinder such that a steady corona discharge takes place. For nearly fully developed flows for Reynolds numbers from 300 to 6500 and corona discharge currents up to 1.1 mA, the reaction rate increases with corona current. Augmented reaction rates are correlated in terms of the ratio of electrical body forces due to corona discharge and the momentum forces of the mean flow. The reaction order is found to be unity with respect to the concentration, both with and without corona discharge present. Overall first-order rate constants are much lower than true rate constants, indicating a dominance of mass transfer. Rate constants are found to increase markedly with corona current but cannot be correlated in the same way as heat transfer coefficients. The fractional increase in overall reaction rate at constant corona current, is found to increase rapidly for low Reynolds numbers, but after reaching a peak, decreases rapidly. This decrease occurs across the laminar-to-turbulent flow transition.  相似文献   

8.
Reto Müller  A. Steinfeld   《Solar Energy》2007,81(10):1285-1294
A solar chemical reactor for the thermal dissociation of ZnO is modeled by means of a detailed heat transfer analysis that couples radiative transport to the reaction kinetics. An extended band-approximated radiosity method enables the analysis of directional and wavelength depended radiation exchange. Boundary conditions included the incident concentrated solar radiation, determined by the Monte Carlo ray-tracing technique, and the hemispherical and band-approximated optical properties derived for the quartz window. Validation was accomplished by comparing the numerically modeled and experimentally measured window temperatures, reaction rates, and energy conversion efficiencies. The experimentally measured solar-to-chemical energy conversion efficiency increased with temperature, peaked at 14% for a reactor temperature of 1900 K and ZnO dissociation rate of 12 g/min, and decreased as the reactor approached its stagnation temperature. The conditions for which this efficiency can be augmented are discussed.  相似文献   

9.
The present study demonstrates a possible configuration of a 200 MW chemical looping combustion (CLC) system with methane (CH4) as fuel. Iron oxide‐based oxygen carriers were used because of its non‐toxic nature, low‐cost, and wide availability. We analyzed the effects of different variables on the design of the system. For the air reactor (oxidizer), bed mass is independent, and for the fuel reactor (reducer), it decreases with increase in the conversion difference between the air and fuel reactors. On the other hand, the pressure drop in the air reactor is unchanged, whereas for the fuel reactor, it decreases with the same increase of conversion difference between air and fuel reactors. Also, entrained solid mass flow rate from the air to fuel reactor shows a decreasing trend. Bed mass, bed height, pressure drop, and residence time of the bed materials decrease with increase in the conversion rates in the air and fuel reactors. Residence time of bed material in the air and fuel reactor reduces with increase in the temperature of the air reactor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The reaction between metal hydride (MH) and hydrogen gas generates substantial amount of heat. It must be removed rapidly to sustain the reaction in the metal hydride hydrogen storage reactor. Previous studies indicate that the performance of the reactor can be improved by inserting an efficient heat exchanger design inside the metal hydride bed. In the present study, a cylindrical shaped metal hydride system containing LaNi5, integrated with a finned tube heat exchanger assembly made of copper pin fins and tubes, is presented. A 3-D numerical model is formulated in COMSOL Multiphysics 4.4 to study the transient behavior of sorption process inside the reactor. Experimental data obtained from the literature is used to approve the legitimacy of the proposed model. Influence of various operating and geometric parameters on the total absorption time of the reactor has been investigated. It is found that hydrogen supply pressure is the most influencing factor to increase the absorption rate of hydrogen. Total absorption time of the reactor is found to be 636 s with maximum storage capacity of 1.4 wt% at the operating conditions of 15 bar H2 gas supply pressure, heat transfer fluid temperature of 298 K and flow rate of 6.75 l/min.  相似文献   

11.
A novel approach for the hydrogen production which integrated methanol steam reforming and fluidized bed reactor (FBR) was proposed. The reaction was carried out over Cu/ZnO/Al2O3 catalysts. The critical fluidized velocities under different catalyst particle sizes and masses were obtained. The influences of the operating parameters, including that of H2O-to-CH3OH molar ratio, feed flow rate, reaction temperature, and catalyst mass on the performance of methanol steam reforming were investigated in FBR to obtain the optimum experimental conditions. More uniform temperature distribution, larger surface volume ratio and longer contacting time can be achieved in FBR than that in fixed bed reactor. The results indicate that the methanol conversion rate in FBR can be as high as 91.95% while the reaction temperatures is 330 °C, steam-to-carbon molar ratio is 1.3, and feed flow rate is 540 ml/h under the present experiments, which is much higher than that in the fixed bed.  相似文献   

12.
The methanol steam reforming (MSR) performance in a microchannel reactor is directly related to the flow pattern design of the microchannel reactor. Hydrogen production improvements can be achieved by optimal design of the flow pattern. In this study, an A-type microchannel reactor with a flow pattern design of one inlet and two outlets was applied to conduct the MSR for hydrogen production. The MSR performance of the A-type microchannel reactor was investigated through numerical analysis by establishing a three-dimensional simulation model and compared with that of the conventional Z-type microchannel reactor. Experiments were also conducted to test the MSR performance and validate the accuracy of the simulation model. The results showed that compared with the conventional Z-type microchannel reactor, the species distributions in the A-type microchannel reactor were more homogeneous. In addition, compared with the Z-type microchannel reactor, the A-type microchannel reactor was shown to effectively increase the methanol conversion rate by up to 8% and decrease the pressure drop by about 20%, regardless of a slightly higher CO mole fraction. It was also noted that with various quantities of microchannels and microchannel cross sections, the A-type microchannel reactor was still more competitive in terms of a higher methanol conversion rate and a lower pressure drop.  相似文献   

13.
A series of bed collapse tests were conducted for determining the dense fluidization flow rate of a gas-solid mixture in a micro-channel fluidized bed reactor, and a separate simulation was created for calculating the reactor conversion and temperature of the catalytic methane pyrolysis. The minimum fluidization and minimum bubbling flow rates were determined to be 3.04 and 8.07 sccm for a 2 × 4 mm2 reactor channel with an average voidage of 0.57; 6.21 and 15.9 sccm for a 4 × 6 mm2 channel with an average voidage of 0.42, respectively. By building a correlation between these critical velocities and the cross-sectional area of the fluidized bed reactor channel, the dense fluidization flow rate at the micro-/mini-channel level with an internal diameter range from 0.3 to 1 mm is predicted between 1.47 to 4.21 sccm. In the simulation, an internal diameter of 0.6 mm, a 10-kW solar input rate, and an initial gas flow rate from 0.08 to 0.23 sccm that expands to 1.5–4.3 ccm at the reaction temperature, are considered as the optimal conditions to maintain a reasonable conversion of methane pyrolysis and to keep the mixed fluid in the dense fluidization within the laminar flow range. The conversion of 79% under these conditions was calculated numerically and found to be promising compared to literature reports. An additional force analysis on a single carbon black particle is shown with different reactor orientations to validate the experimental data and simulation results.  相似文献   

14.
Solar cracking of methane is a promising technology for emission free hydrogen production. One of the major problems affecting methane cracking solar reactors' performance is the carbon particle deposition on the window, walls, and at the exit. In present study, a Lagrangian particle dispersion model has been implemented for predicting the particle deposition on the window of a seeded solar thermal reactor. A three-dimensional Computational Fluid Dynamics (CFD) analysis using Discrete Phase Model (DPM) has been done for qualitative validation of the experimental observations. In order to evaluate the turbulent quantities in the solar reactor; RNG k? model has been applied. Species transport has been solved by taking the gas for window screening as different from that used in the main flow. In addition, this paper presents a thorough parametric study predicting the particle deposition on reactor window for various flow configurations and flow conditions, which can be summarized as; (1) when the inlet flow angle is smaller, higher tangential velocities or swirl strength is obtained, (2) higher tangential velocities help in maintaining a stronger swirl, which keeps the screening flow close to the reactor window, (3) by increasing the main flow and the screening flow rates, the particle deposition on window is reduced, (4) when a lower density fluid is used as window screening gas, the particle deposition is reduced because the Taylor instabilities are avoided. The CFD work and the findings presented in this paper would be used as a guide in designing a solar reactor or improving the configuration of existing reactor.  相似文献   

15.
In order to study the dehydrogenation reaction mechanism of ultra-low concentration methane in a thermal reverse-flow reactor, the effects of the cyclic period (120s–240s), the lean methane volume flow (90 Nm3/h to 180 Nm3/h), and the methane concentration (0.2 vol% to 0.8 vol%) on the dehydrogenation performance were studied systematically by using a thermal reverse-flow experimental system. When the methane concentration is 0.2 vol%, the reactor can achieve self-heat maintaining operation. With the increase in the methane concentration, the width of the high-temperature zone, the exhaust gas temperature, the methane conversion rate, and the maximum temperature of the heat-accumulator bed increase. With the increase in the lean methane volume flow, the width of the high-temperature zone, the distance between the center of the high-temperature zone and the center of the reactor, the maximum temperature, the exhaust gas temperature, and the methane conversion rate increase. With the increase in the cyclic period, the exhaust gas temperature and the deviation of the high-temperature zone increase, but the methane conversion rate and the maximum temperature decrease slightly.  相似文献   

16.
The hydrogen production and purification via methanol reforming reaction was studied in a double-jacketed Pd membrane reactor using a 1-D, non-isothermal mathematical model. Both mass and heat transfer behavior were evaluated simultaneously in three parts of the reactor, annular side, permeation tube and the oxidation side. The simulation results exhibited that increasing the volumetric flow rate of hydrogen in permeation side could enhance hydrogen permeation rate across the membrane. The optimum velocity ratio between permeation and annular sides is 10. However, hydrogen removal could lower the temperature in the reformer. The hydrogen production rate increases as temperature increases at a given Damköhler number, but the methanol conversion and hydrogen recovery yield decrease. In addition, the optimum molar ratio of air and methanol was 1.3 with three air inlet temperatures. The performance of a double-jacketed membrane reactor was compared with an autothermal reactor by judging against methanol conversion, hydrogen recovery yield and production rate. Under the same reaction conditions, the double-jacketed reactor can convert more methanol at a given reactor volume than that of an autothermal reactor.  相似文献   

17.
The fluid flow and heat transfer in a thin liquid film are investigated numerically. The flow is assumed to be two-dimensional laminar, and surface tension effects at the exit are considered. The most important characteristic of this flow is the existence of a hydraulic jump through which the flow undergoes a very sharp and discontinuous change. In the present study, a simplified model of a free liquid jet impinging on a plane is considered. An arbitrary Lagrangian–Eulerian (ALE) method is used to describe the moving free boundary, and the fractional step method (FSM) based on the streamline upwind Petrov–Galerkin (SUPG) finite element method is used for the time-marching iterative solution. The numerical results obtained by solving the unsteady full Navier–Stokes equations are presented for plane and radial flows with constant wall temperature. © 1999 Scripta Technica, Heat Trans Asian Res, 28(1): 18–33, 1999  相似文献   

18.
In this contribution, viability of processing of the flue gas streams as a source of carbon dioxide for the thermo-catalytic conversion was investigated. For this purpose, a Ni/Al2O3 commercial catalyst with known chemical kinetics was utilized. Moreover, a transient mathematical model for dynamic catalyst deactivation was developed and validated with experimental results available in the open literature. The developed model was then utilized to understudy an air-cooled membrane reactor. Different tube configurations were understudied and compared to choose the conditions under which high conversion was feasible. Sensitivity analysis revealed that, the space velocity, cooling rate, and feed distribution were all considered to be critical factors. It was revealed that, the presence of membrane resulted in higher conversion through the undertaken reactor. It made it possible to enhance reaction yield of non-membrane reactor through evenly distributing hydrogen along its length. A designed heat-exchanger (HEX) membrane reactor achieved 99% CO2 conversion when the coolant flow rate was reached to 10% of the coolant gravimetric flow rate, feed space velocity was set at 100 h−1 and the feed pressure was set at 10 bars.  相似文献   

19.
This study presents a designed and tested integrated miniature tubular quartz-made reactor for hydrogen (H2) production. This reactor is composed of two concentric tubes with an overall length of 60 mm and a diameter of 17 mm. The inner tube was designed as the combustor using Pt/Al2O3 as the catalyst. The gap between the inner and outer tubes is divided into three sections: a liquid methanol-water vaporizer, a methanol-steam reformer using RP-60 as the catalyst and a carbon monoxide (CO) methanator using Ru/Al2O3 as the catalyst. The experimental measurements indicated that this integrated reactor works properly as designed. The methanol conversion, hydrogen production rate and CO concentration were found to increase with an increasing methanol/air flow rate in the combustor and decreases with an increasing methanol/water feed rate to the reformer. The methanator experimental results indicated that the CO conversion and H2 consumption can be enhanced by increasing the Ru loading. It was also found that the CO methanation depends greatly on the reaction temperature. With a higher reaction temperature, the CO methanation, carbon dioxide (CO2) methanation, and reversed water gas shift reactions took place simultaneously. CO conversion was found to decrease while H2 consumption was found to increase. At a lower reaction temperature both the CO conversion and H2 consumption were found to increase indicating that only CO methanation took place. From the experimental results the maximum methanol conversion, hydrogen yield, and CO conversion achieved were 97%, 2.38, and 70%, respectively. The actual lowest CO concentration and maximum power density based on the reactor volume were 90 ppm and 0.8 kW/L, respectively.  相似文献   

20.
Partial oxidation of methane (POM) has been tested in an asymmetric microchannel reactor with different inlet configurations. One inlet of the reactor provided successive splitting of an inlet flow into parallel channels, whereas the opposite inlet allowed the inlet flow to enter the parallel channels simultaneously. It was found that concentrations of carbon monoxide and carbon dioxide changed by 20–30% and the conversion of methane changed by 5–20%, depending on the rate and direction of the inlet flow. The hydrogen production rate practically did not depend on the inlet configuration and equaled 15 l/h at the inlet flow rates from 600 to 1400 cm3/min and at the methane conversion of 80%. The data obtained demonstrated that the use of different operating modes of the asymmetric microreactor allows changing the composition of produced syngas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号