首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Column‐tree moment resisting frames, as the efficient shop‐welded and field‐bolted structural systems, are used in many countries. Very limited research has been carried out on such systems under fire conditions. This paper presents experimental and numerical investigations of the behavior of beam and bolted splice connections in steel column‐tree moment resisting frames exposed to fire. Two full‐scale steel sub‐frames with different splice connections were tested under International Organization for Standardization (ISO 834) fire. The observation of thermal and structural fire behaviors including temperature histories, temperature deflection of the beam, temperature rotation of splice connections, and failure modes was investigated. The beam splice connection failed because of shear fracture of top bolts at temperatures beyond 750 °C, while beam underwent large deflections of more than span/20. In addition, detailed 3‐D finite element models were developed to simulate the structural behavior of the specimens in fire. Obtained numerical results from the finite element analysis successfully simulated the experimental fire test results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The outbreak of fire events in high‐rise buildings in recent years and the vulnerability of steel structure buildings, which leads to partial or complete failure of structures, clearly illustrate the need for designing such buildings against fire. The first step in fire design of structures is to have access to simplified equations for analyzing structural components against fire. Regarding this issue, to provide moment‐rotation relationships for designing welded seated angle connections, a modified spring stiffness model is presented in this article. In this method, the effective connection components are represented as springs with certain strength and stiffness properties that change as the temperature changes. Considering the special effect of welds on the behavior of these types of connections, separate springs for each section of the welds are considered and the effects of temperature on welds and base metal are taken into account. Comparing the results obtained from the proposed formulas with those of the tests, as well as the numerical analysis results, shows that the results in this method can be provided fast and accurately.  相似文献   

3.
The paper describes and discusses the results of an extensive testing programme on the structural behaviour of timber connections under ISO‐fire. The results of reference tests performed at normal temperature are also presented. From the variety of timber connections multiple shear steel‐to‐timber connections with dowels and slotted‐in steel plates and connections with steel side plates and annular ringed shank nails were experimentally studied. Particular attention was given to the analysis of the efficiency of different strategies in order to increase the fire resistance of the timber connections. The test results showed that unprotected multiple shear steel‐to‐timber connections with dowels designed for normal temperature reached a fire resistance of about 30 min. A reduction of the load level applied during the fire did not lead to a significant increase of the fire resistance. By increasing the side timber members as well as the end distance of the dowels by 40 mm the connections reached a fire resistance of more than 70 min. Connections protected by timber boards or gypsum plasterboards showed a fire resistance of around 60 min. Thus, from a fire design point of view these strategies were favourable in order to increase the fire resistance of the connections significantly. Unprotected connections with steel side plates and annular ringed shank nails failed already after about 12 min due to large deformations of the nails and the steel side plates directly exposed to fire. By protecting the steel side plates using an intumescent paint the fire resistance of the connections was increased to around 30 min. The test results enlarged the experimental background of timber connections in fire significantly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Effective fire protection of steel can be fully realized when spray‐applied fire resistive materials (SFRMs) are bonded sufficiently to structural steel during the event of a fire. The adhesion mechanisms and characterization at elevated temperatures, however, have remained elusive, owing to a shortage of quantitative experimental measurements of adhesion between SFRMs and structural steel. In complement with recent efforts aiming to measure the adhesion at ambient temperature, this contribution reports an experimental method based on a fracture mechanics approach to quantify temperature dependent adhesion behaviors of SFRMs adhered to steel substrates. Using this test method, it is shown that a sharp loss in adhesion occurs at temperatures well below 200 °C, and a less severe rate at higher temperatures. Thermogravimetric analysis and quasi‐state uniaxial compression tests reveal that SFRMs undergo pronounced losses in mass and modulus upon elevated temperature exposures, respectively. Additionally, the dependence of the bulk properties on temperature correlates strongly with that of fracture energy. A mechanism based on mechanical softening and dehydration of SFRMs is proposed to explain the thermally induced adhesion loss. Furthermore, a comparison with the ASTM E736 was made by invoking a fracture mechanics theory. Calculation of bond strengths reveals temperature dependence analogous to the fracture energy data. Also, the residual bond strengths above 150 °C fall below the threshold value (i.e., ≥ 7.2 kPa or 150 lb/ft2) described in the ASTM E736. Importantly, the SFRMs are found to retain appreciable bond strengths greater than their own body masses, permitting them to remain intact in the event of a fire, in the absence of external perturbations. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
Investigation on the fire resistance of fibre‐reinforced polymer (FRP) reinforced concrete (RC) is essential for increased application of FRP bars in the construction industry. Experimental tests for determining the fire resistance of RC elements tend to be expensive and time‐consuming. Although numerical models provide an effective alternative to these tests, their use in case of FRP RC structures is hindered because of the insufficient constitutive laws for FRP bars at elevated temperatures. This paper presents the details of a numerical modelling work that was carried out for simply supported carbon FRP (CFRP) and hybrid (steel‐FRP) bar RC beams at elevated temperatures. Constitutive laws for determining temperature‐dependent strength and stiffness properties of CFRP bars are proposed. Numerical models based on finite element modelling were employed for the rational analysis of beams using the proposed constitutive laws. The behaviour of concrete was simulated by means of a smeared crack model based on the tangent stiffness solution algorithm. The employed numerical models were validated against previous experimental results. The theoretical rebar stresses were calculated in both the FRP and steel bars, and the differences are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the authors present experimental results and observations of four full‐scale standard fire tests on single‐leaf steel doors and steel frames installed in 3 × 3 m non‐load‐bearing partition walls. Three full‐scale fire tests were performed on steel doors installed in lightweight partition walls constructed by using steel C‐section studs with gypsum boards fixed on both sides. Two lightweight walls incorporated Rockwool cavity insulation, while the third lightweight wall was constructed without cavity insulation. The fourth fire test involved a steel door installed in a masonry partition wall. While the steel door leaf and door frames were identical in all four full‐scale tests, only the steel door installed in the masonry wall achieved the desired fire resistance rating of 30 min. The integrity criterion for fire resistance was determined for the scenario when the door opened away from the furnace. The duration of fire resistance according to the integrity criterion was found to be 38, 25 and 19 min for the same door when installed in masonry wall, uninsulated lightweight wall and insulated lightweight wall respectively. For the thermal insulation criterion of fire resistance, the scenario of the door opening into the fire was found to be the most onerous. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Fire resistance behaviour of lightweight‐framed assemblies is determined by defining the thermal and structural performances of the assembly when exposed to fire. To adequately model thermal behaviour in a lightweight wood‐framed assembly, thermal properties of the components of the assembly at elevated temperatures must be well defined. This paper presents results of measurements of thermal properties at elevated temperatures of construction materials commonly used to build lightweight wood‐framed assemblies that were conducted at the National Research Council of Canada since 1990. The test results, in graphical form, are given as a function of temperature for thermal conductivity, specific heat, mass loss and thermal expansion/contraction for wood, gypsum and insulation. In addition, the effects of temperature on the thermal conductivity, specific heat, mass loss and thermal expansion/contraction of these materials are discussed. Finally, in addition to providing a resource of information, this paper also identifies the additional thermal property tests required to complete the matrix of information. Copyright © 2005 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a practical procedure for obtaining creep‐free stress‐strain laws for steel exposed to fire, on the basis of codified stress‐strain laws that consider creep implicitly. The applicability of the proposed procedure has been tested on two commonly used stress‐strain laws for steel at elevated temperature, the Eurocode 3 law and a Ramberg–Osgood model, both of which have implicit consideration of creep. The simulation of two published steel coupon experiments on steel of grades S275 and S355 shows that both the Eurocode and Ramberg–Osgood stress‐strain laws produce inaccurate predictions of creep in fire at elevated temperatures. The proposed procedure was thereby used to extract the implicit creep according to the heating rates of the transient coupon tests and to derive the creep‐free stress‐strain laws. It has been shown that, by combining the creep‐free stress strain law obtained by the proposed methodology with an explicit creep model, a more realistic prediction of steel behaviour in the selected coupon test studies can be achieved. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand coated full‐scale components or intermediate‐scale specimen. The STT Mufu+ (standard time temperature muffle furnace+) approach is presented. It is a recently developed bench‐scale testing method to analyze the performance of intumescent coatings. The STT Mufu+ provides vertical testing of specimens with reduced specimen size according to the STT curve. During the experiment, the foaming process is observed with a high‐temperature endoscope. Characteristics of this technique like reproducibility and resolution are presented and discussed. The STT Mufu+ test is highly efficient in comparison to common tests because of the reduced sample size. Its potential is extended to a superior research tool by combining it with advanced residue analysis (μ‐computed tomography and scanning electron microscopy) and mechanical testing. The benefits of this combination are demonstrated by a case study on 4 intumescent coatings. The evaluation of all collected data is used to create performance‐based rankings of the tested coatings.  相似文献   

10.
Advanced fire modelling software have been developed and improved during the last couple of decays and these kinds of software have been shown to be valuable tools for fire safety engineers. However, the advances made have not replaced the need for simple hand‐calculation methods. Simple hand‐calculations methods can be used to obtain a first estimate of, for example, smoke layer temperatures in a performance‐based design or to help an engineer determine if it is necessary to perform a detailed computational fluid dynamics calculation, but the current hand‐calculations methods are limited. The current methods can for example only predict smoke gas temperatures in the fire room. A correlation that could predict temperatures in an adjacent space would be useful in performance‐based design when, for example, evaluating the conditions for evacuees or sensitive equipment in an adjacent space to the room of fire origin. In this paper, a correlation for predicting gas temperatures in a room adjacent to a room involved in a pre‐flashover fire is developed. The correlation is derived from results from computer simulations and the external validity is studied by comparing results from the correlation with full‐scale test data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Self‐compacting concrete or self‐consolidation concrete (SCC) is being used in underground and other industrial structures that may be subjected to high temperatures during operation or in case of an accidental fire. The proper understanding of the effects of elevated temperatures on the stress–strain relationship of SCC is necessary in the assessment of structural safety. This paper presents the high temperature behavior from an experimental study carried out on SCC subjected to high temperatures. The effects of temperature, strength grade, and polypropylene (PP) fibers on the initial elastic modulus, strain at peak stress, and stress–strain curves of SCC are studied, which offered a test basis for estimating the deformation of SCC under high temperature. An empirical constitutive formula for the thermal stress–strain of SCC is developed on the basis of the deformation characteristics of PP fiber‐modified SCC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes and validates by comparisons with tests a one‐zone model for computing temperature of fully developed compartment fires. Like other similar models, the model is based on an analysis of the energy and mass balance assuming combustion being limited by the availability of oxygen, ie, a ventilation‐controlled compartment fire. However, the mathematical solution techniques in this model have been altered. To this end, a maximum fire temperature has been defined depending on combustion efficiency and opening heights only. This temperature together with well‐defined fire compartment parameters was then used as a fictitious thermal boundary condition of the surrounding structure. The temperature of that structure could then be calculated with various numerical and analytical methods as a matter of choice, and the fire temperature could be identified as a weighted average between the maximum fire temperature and the calculated surface temperature of the surrounding structure as a function of time. It is demonstrated that the model can be used to predict fire temperatures in compartments with boundaries of semi‐infinitely thick structures as well as with boundaries of insulated and noninsulated steel sheets where the entire heat capacity of the surrounding structure is assumed to be concentrated to the steel core. With these assumptions, fire temperatures could be calculated with spreadsheet calculation methods. For more advanced problems, a general finite element solid temperature calculation code was used to calculate the temperature in the boundary structure. With this code, it is possible to analyze surrounding structures of various kinds, for example, structures comprising several materials with properties varying with temperature as well as voids. The validation experiments were accurately defined and surveyed. In all the tests, a propane diffusion burner was used as the only fire source. Temperatures were measured with thermocouples and plate thermometers at several positions.  相似文献   

13.
The development of fire‐safety measures for high‐speed passenger trains has been focused on preventing fire initiation or delaying fire growth and spread through small‐scale tests of the materials used in trains. However, new fire‐safety approaches for trains consider a systemic approach. This approach considers numerous global factors that influence fire dynamics, such as the influence of vehicle design, selection of materials, and active and passive protection systems installed. In the present paper, the results of small‐scale and full‐scale tests carried out on the new generation of high‐speed trains operating in Spain are presented. This rolling stock is classified as category B according to the Technical Specification for Interoperability and Operation Category 3 according to EN 45545–1. The results confirmed good fire behaviour using both approaches (small and full‐scale tests). Additionally, several analyses have been performed, including an analysis of the quality of materials used for making different components of the passenger compartment and the influence of ignition source position on fire development. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the results of twenty-one fire tests on unprotected steel-to-timber connections with dowel-type fasteners and one or two slotted-in steel plates. The experimental results of this type of connections available in existing studies have been mostly limited to a fire resistance duration of 60 min. The tests performed in this study target a significant increase of fire resistance to reach 90 and 120 min. Two configurations of connections with one and two slotted-in steel plates, i.e., two or four shear planes, were tested. The temperatures were measured at different locations in the wood members and along the steel plates. Two load levels for fire tests were determined on the basis of tests performed at ambient temperature. The experimental results show that the specimens proposed for steel-to-timber connections with dowel-type fasteners are suitable for achieving fire resistance of 90 and 120 min.  相似文献   

15.
This paper presents results from experimental studies on the effect of temperature on mechanical properties of high‐strength low‐alloy ASTM A572 steel commonly used in structural members in bridges. A set of high‐temperature tensile strength tests and post‐temperature exposed residual strength tests is carried out on ASTM A572 steel coupons in 20–1000 °C temperature range. The residual strength tests on high‐temperature exposed steel coupons are carried out after subjecting the coupons to two methods of cooling, namely, air cooling and water quenching. Results from these tests indicate that temperature‐dependent strength and stiffness degradation in A572 steel follow the same trend as that of carbon steel but with some variations. A572 steel recovers almost 100% of its room temperature yield strength when heated to temperature up to 600 °C, regardless of the method of cooling, while the extent of strength degradation in coupons subjected to heating beyond 600 °C is dependent on heated temperature and method of cooling. Data generated in these tests are utilized to generate high‐temperature stress–strain and residual stress–strain response of A572 steel. These results are also utilized to propose temperature‐dependent strength, elastic modules, and residual strength reduction factors of A572 steel, which can be used in evaluating residual response of fire‐exposed steel structures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, constitutive relationships have been developed for confined concrete subjected to elevated temperature to specify the fire‐performance criteria for concrete structures after exposé to fire. This study extends over a total of 63 circular hoop confined concrete specimens that were casted and tested under concentric compression loading after exposure to high temperature. The test variables studied are the yield strength of transverse reinforcement, spacing of the hoop, and exposure to temperatures from ambient to 800°C. It is shown that all of these variables have significant influence on concrete behavior at different temperatures and further an improvement in the thermal resistance of concrete when confined using transverse steel reinforcement. On the basis of experimental results, a model for confined concrete after exposed to high temperature is proposed to predict the results of residual behavior after thermal cycles. The proposed empirical stress‐strain equations are suitable to predict the postfire behavior of confined normal strength concrete in compression. The predictions were found to be in good agreement and well fit with experimental results.  相似文献   

17.
Repeatability of large‐scale fire test remains a key issue for code validation process. Most of the large‐scale experimental studies are based on single experiment, and the influence of repeatability is barely considered in the test analysis process. Due to the substantial cost, reproducing several trials of a given large‐scale fire scenario is not often performed. In the framework of the OECD PRISME 2 project, this topic has been identified, and a specific large‐scale fire test has been reproduced twice in the final goal of assessing the level of repeatability. The scenario is an oil pool fire in an enclosure mechanically ventilated and during which a water spray system is activated. The analysis consists in identifying a set of variables on which metrics is applied in order to quantify the levels of discrepancy between the two tests. A set of 27 variables are selected such as they characterize the whole fire scenario (the fire source, the gas phase, walls, the ventilation network, and the water spray system). The analysis points out that the repeatability levels are different depending on the type of variable. The gas temperature or species concentrations are more repeatable than gas pressure or air flow rate. In addition, a new methodology is proposed in comparing, for each physical variable, the variations due to repeatability (ie, the precision) and the uncertainty. A new metric is proposed helping modelers in code validation process.  相似文献   

18.
Optimization of industrial‐scale deodorization of high‐oleic sunflower oil (HOSO) via response surface methodology is presented in this study. The results of an experimental program conducted on an industrial‐scale deodorizer were analyzed statistically. Predictive models were derived for each of the oil quality indicators (QI) in dependence on the studied variable deodorization process parameters. The deodorization behavior of some minor components was analyzed on a pilot‐scale deodorizer. For comparison, a similar experimental program was also performed on the laboratory‐scale. The results of this study demonstrate that optimization of the deodorization process requires a suitable compromise between often mutually opposing demands dictated by different oil QI. The production of HOSO with top‐quality organoleptic and nutritional values (high tocopherol and phytosterol contents and low free and trans fatty acid contents) and high oxidative stability demands deodorization temperatures in the range between 220 and 235 °C and a total sparge steam above 2.0% (wt/wt in oil). The response surface methodology provides the tools needed to identify the optimum deodorization process conditions. However, the laboratory‐scale experiments, while showing similar response characteristics of QI in dependence on the process parameters and thus helpful as a guide, are of limited value in the optimization of an industrial‐scale operation.  相似文献   

19.
Our present paper summarizes the shortcomings in the current fire‐resistant design of oversized steel structures and proposes a method for overall stability analysis of steel structures in the event of fire. The Fire Dynamics Simulator (FDS) software platform–based large‐eddy simulation technology can accurately reflect the environment in a fire scenario and correctly predict the spatial–temporal change in the smoke temperature field within an oversized space. Adopting the FDS software and finite element structural analysis (ANSYS) coupling can fundamentally overcome the natural defect of adopting the International Organization for Standardization (ISO) standard curve (or other indoor homogeneous temperature increase curves) that substitutes a point for the overview of a field. They reflect the structural additional internal force and internal force redistribution incurred by the gradient temperature difference of the spatial–temporal changing nonhomogeneous temperature field and both theoretically and technically realize the analysis of structural heat transfer and mechanical properties in a natural fire. Furthermore, a modified model to predict the steel temperature curve in localized fire is also proposed. The localized fire in large spaces can be treated as a point fire source to evaluate the flame thermal radiation to steel members in the modified model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Fire hazard studies of clean room facilities indicated that significant losses due to fire may occur in the semiconductor industry. The present study reports the results of full‐scale wet bench fire tests conducted (1) to assess the fire hazards of existing wet bench materials not meeting the listing requirement of NFPA 318, (2) to assess the impact on wet bench fires of engineered materials with improved flammability characteristics, and (3) to compare the observed fire behavior with the results of simpler small‐ and intermediate‐scale fire tests using the same materials. The full‐scale wet bench fires were observed to be consistent in terms of chemical heat release rate, fire propagation, and smoke generation with the results of the small‐ and intermediate‐scale test results. The simpler fire tests are incorporated in FM Approvals 4910 certification for materials to be used in semiconductor fabrication facilities. The small‐scale test protocol is also standardized in NFPA 287. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号