首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the northern China areas, the traditional heating methods are widely used in solar greenhouse, for example: electric heating, hot air heating, hot water heating, burning-cave heating etc. If copying the assuring building indoor environment of constant heating ways into solar greenhouse, it will further increase building energy consumption, thus improving the efficiency of energy utilization, establishing appropriate growing environment, and realizing the agricultural waste recycling are important ways of consistent with the Chinese conditions, construction of sustainable development, improving the efficiency of the greenhouse production. To solve the problem of traditional heating method for high heating energy consumption, the inharmonious between greenhouse air temperature and soil temperature, uneven soil temperature, the research build the burning cave hot water soil heating system of solar greenhouse experimental platform in accordance with principle of energy cascade utilization. This experiment platform will transfer burning cave internal heat into soil heating system. The soil is evenly heated by system. Through testing the actual operation effect of the burning cave hot water soil heating system of new solar greenhouse, electric heating system, no taking any heating measures system, burning cave hot water soil heating system of solar greenhouse can improve the soil average temperature 5 ∼ 6 °C. This research provides experimental basis for practical applications and promotion.  相似文献   

2.
In order to investigate the performance of the combined solar–heat pump system with energy storage in encapsulated phase change material (PCM) packings for residential heating in Trabzon, Turkey, an experimental set‐up was constructed. The experimental results were obtained from November to May during the heating season for two heating systems. These systems are a series of heat pump system, and a parallel heat pump system. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load meet by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
文章设计了闭式外腔循环太阳能墙系统,从理论和实验两方面研究太阳能墙传热传质规律。以大连市冬季为研究背景,基于对实验测温点不同时刻的持续监测,从逐时曲线中分析了不同环境下闭式外腔循环系统内部温度以及室内获得热量后室温的变化情况。结果表明,太阳能墙集热效率与太阳辐射强度密切相关,在晴朗天气下,白天部分时段单一太阳能墙就能满足采暖要求,不满足采暖要求时可以选择空气源热泵辅助采暖。  相似文献   

4.
A small-scale silica gel-water adsorption system with modular adsorber, which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect, is proposed and investigated in this paper. A heat recovery process between two adsorbers and a mass recovery process between two evaporators are adopted to improve the overall cooling and heating performance. First, the adsorption system is tested under different modes (different mass recovery, heat recovery, and cogeneration time) to determine the optimal operating conditions. Then, the cogeneration performance of domestic cooling and water heating effect is studied at different heat transfer fluid temperatures. The results show that the optimal time for cogeneration, mass recovery, and heat recovery are 600 s, 40 s, and 40 s, respectively. When the inlet temperature of hot water is around 85°C, the largest cooling power and heating power are 8.25 kW and 21.94 kW, respectively. Under the condition of cooling water temperature of 35°C, the obtained maximum COPc, COPh, and SCP of the system are 0.59, 1.39, and 184.5 W/kg, respectively.  相似文献   

5.
This paper presents a novel air source heat pump for heating of buildings named air source heat pump with multiple parallel outdoor units (ASHPMO). Multiple outdoor units were connected in parallel with the aim of realising alternate defrosting and uninterrupted heating simultaneously. An experimental apparatus of the ASHPMO system was developed. The defrosting performance was experimentally investigated under different outdoor air temperatures, outdoor air relative humidity, and condensation temperatures, among other factors. The test results showed that the novel ASHPMO system could provide continuous heating when defrosting even under an outdoor air temperature of −10°C. Variations in compressor vapour suction and discharge pressure and temperature were observed. The minimum heating capacity could still reach 60% of that without defrosting. Under the defrosting condition with outdoor air temperature −10°C, both the heating coefficient of performance (heating COP) and total energy efficiency ratio (EER) of the system can reach to 2.0 and 2.32, respectively.  相似文献   

6.
Some potential safety risks for lithium ion battery such as overheating, combustion, and explosion occurred in practical application may cause accidents of electric vehicles. Phase change material (PCM)‐based thermal management system was demonstrated as a feasible approach. However, the batteries have to endure various environment and climate, which would not work normally under cold area. Especially when the surrounding temperature falls to below 10°C, which can bring about the energy and power of Li‐ion batteries rapidly reducing. In this study, a coupling heating strategy of the PCM‐based batteries module with 2 heat sheets at low temperature was proposed for batteries module and cannot only balance the temperature among different batteries in the module but also ensure to pre‐heat the batteries module at low temperature. The experiment displayed that 7% of EG in paraffin‐based composite PCMs was the best proportion for batteries module, considering both fluidity and thermal conductivity factors. In addition, the temperature difference of PCM‐based batteries module was 2.82°C, while that of the air‐based one was 14.49°C, which was 5 times more than former, exhibiting an excellent performance in balancing temperature uniformly, and was beneficial for prolonging the lifespan of batteries. The coupling heating strategy‐based PCM with heat sheets provided as an extremely promising technology for lithium batteries module at low temperature.  相似文献   

7.
When using passive solar heating systems, it is necessary to have available an Equator-facing facade on which to install them. Rooms without such a facade are not the best option for conventional passive solar heating systems. SIRASOL is a passive solar radiant system that captures solar energy and is to be installed in the ceiling of the room. This room must not necessarily have an Equator-facing facade. Solar energy heats up a metal sheet, which is the radiant panel, which transfers heat by long-wave radiation to the room below it. This paper presents a mathematical model and a sensitivity analysis. The mathematical model was used to analyze radiant panel temperature, radiant mean temperature, operative temperature and panel surface area. Results of the sensitivity study showed that when solar radiation rises (from 200 to 800 W) panel temperature increases from 36 °C to 92 °C, whereas variations in outside and inside air temperature have a negligible impact on the panel temperature. Thus, the use of SIRASOL is possible in locations with clear skies. Moreover, from panel temperature values we calculated mean radiant temperature and thereby the room’s operative temperature, which is proportional to the radiant panel area. When this area is 50% of the room’s floor area, operative temperature grows 3.1 °C higher than inside air temperature when solar radiation is 500 W/m2. The analysis shows that a thermal asymmetry appears only when SIRASOL’s surface area to floor area ratio is higher than 32%.  相似文献   

8.
Energy costs and environmental concerns have made energy optimisation a viable option for buildings. Energy‐efficient heating systems together with an effective use of buildings thermal mass and tightness have a significant impact on the energy requirement and on the possibility for sizeable running cost savings. In this study we use the simulation tool TRNSYS‐EES to model and analyse the performance of a residential house and the low‐temperature heating system that serves its thermal needs. The building is a single‐family house with controlled ventilation and the chosen heating system is a hydronic floor heating system connected to an exhaust air heat pump. The aim of the simulation is to study the performance of the building, the heating system and the controls in an integrated manner. Overall, the results indicate that the energy efficiency issue implicates system design and system thinking concerns as well as techno‐economic difficulties. The controls and the choice of the operation mode are of a great importance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
苏文佳  左然  李平  张志强 《节能技术》2009,27(3):275-279
研制了一种屋顶集热式太阳房供暖系统,对该系统进行了结构设计优化和试验测试,结果表明,在冬季晴朗的白天,对于保温较差的试验平房(热负荷约为120W/m^2),利用1/2的屋顶面积集热,室内温度最高达到20℃,平均温度约18℃,比对照房温度高约6℃;对于保温较好的建筑物(采暖期热负荷约为20W/m^2),太阳能供暖系统在冬季白天可有效地为房间供热,多余的热量利用储热装置储存以满足夜间供暖的需要,从而实现冬季24小时为建筑物供热的目标。  相似文献   

10.
提出一种基于太阳能热风供暖系统的多级相变通风吊顶新型供暖末端。建立多级相变太阳能通风吊顶传热数值模型,对比研究了单级、两级和三级相变太阳能通风吊顶的蓄放热特性,分析相变材料的长度配比、空气流速对供暖末端蓄放热性能的影响规律。研究结果表明,与采用单一相变材料的通风吊顶相比,多级相变太阳能通风吊顶在蓄放热过程中出口平均温度差异更小。相变蓄热级数为3时,通风吊顶的蓄、放热效率及相变材料利用率改善最大,分别为6.5%、7.9%和25.1%,各级相变材料长度的配比为1∶1∶1时,蓄、放热效率及相变材料利用率最佳,分别为51.0%、88.7%和93.9%。空气流速不宜大于1.6 m/s,在保证供暖效果的前提下可适当减小空气流速。  相似文献   

11.
为克服太阳能间断性和不稳定性的缺点进而实现太阳能集热与采暖的能量供需调节和全天候连续供热,提出了基于相变储热的太阳能多模式采暖方法(太阳能集热直接采暖、太阳能集热采暖+相变储热、太阳能相变储热采暖),并在西藏林芝市某建筑搭建了太阳能与相变储热相结合的采暖系统,该系统可根据太阳能集热温度和外界供热需求实现太阳能多模式采暖的自动控制和自动运行。实验研究表明:在西藏地区采用真空管太阳能集热器可以和中低温相变储热器很好地结合,白天储热器在储热过程中平均储热功率为10.63 kW,储热量达到92.67 kW·h,相变平台明显;晚上储热器在放热过程中供热量达85.23 kW·h,放热功率和放热温度平稳,储放热效率达92%,其储热密度是传统水箱的3.6倍,可连续供热时间长达10 h,从而实现了基于相变储热的太阳能全天候连续供热,相关研究结果对我国西藏地区实施太阳能采暖具有一定的指导作用。  相似文献   

12.
The conventional active solar water-heating floor system contains a big water tank to store energy in the day time for heating at night, which takes much building space and is very heavy. In order to reduce the water tank volume or even cancel the tank, a novel structure of an integrated water pipe floor heating system using shapestabilized phase change materials (SSPCM) for thermal energy storage was developed and experimentally studied in this paper. The thermal performances of the floors with and without the SSPCM were compared under the intermittent heating condition. The results show that the Energy Storage Ratio (ESR) of the SSPCM floor is much higher than that of the non-SSPCM floor; the SSPCM floor heating system can provide stable heat flux and prevent a large attenuation of the floor surface temperature. Also, the SSPCM floor heating system dampens the indoor temperature swing by about 50% and increases the minimum indoor air temperature by 2°C–3°C under experimental conditions. The SSPCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.  相似文献   

13.
The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system.The analysis of a fossil plant heating system has been done with a typical building simulation software IDA–ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA–ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy.The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study “ground source heat pump with condenser inlet temperature 30 °C and varying evaporator inlet temperature” has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system.  相似文献   

14.
An experimental and numerical model of a solar chimney was proposed in order to predict its performance under varying geometrical features in Iraqi environmental conditions. Steady, two dimensional, turbulent flow was developed by natural convection inside an inclined solar chimney. This flow was investigated numerically at inclination angles 15° to 60°, solar heat flux 150–750 W/m2 and chimney thickness (50, 100 and 150) mm. The experimental study was conducted using a single solar chimney installed on the roof of a single room with a volume of 12 m3. The chimney was 2 m long; 2 m wide has three gap thicknesses namely: 50, 100 and 150 mm. The performance of the solar chimney was evaluated by measuring the temperature of its glass cover, the absorbing wall and the temperature and velocity of induced air. The results of numerical model showed that; the optimum chimney inclination angle was 60° to obtain the maximum rate of ventilation. At this inclination angle, the rate of ventilation was about 20% higher than 45°. Highest rate of ventilation induced with the help of solar energy was found to be 30 air changes per hour in a room of 12 m3 volumes, at a solar radiation of 750 W/m2, inclined surface angle of 60°, aspect ratio of 13.3 and chimney length of 2 m. The maximum air velocity was 0.8 m/s for a radiation intensity of 750 W/m2 at an air gap of 50 mm thickness. No reverse air flow circulation was observed even at the largest gap of 150 mm. The induced air stream by solar chimney can be used for ventilation and cooling in a natural way (passive), without any mechanical assistance.  相似文献   

15.
The main objective of the present study is to investigate the performance characteristics of a solar‐assisted ground‐source heat pump system (SAGSHPS) for greenhouse heating with a 50 m vertical 1¼ in nominal diameter U‐bend ground heat exchanger. This system was designed and installed in the Solar Energy Institute, Ege University, Izmir (568 degree days cooling, base: 22°C, 1226 degree days heating, base: 18°C), Turkey. Based upon the measurements made in the heating mode, the heat extraction rate from the soil is found to be, on average, 54.08 Wm?1 of bore depth, while the required borehole length in meter per kW of heating capacity is obtained as 12.57. The entering water temperature to the unit ranges from 8.2 to 16.2°C, with an average value of 9.1°C. The greenhouse air is at a maximum day temperature of 25°C and night temperature of 14°C with a relative humidity of 40%. The heating coefficient of performance of the heat pump (COPHP) is about 2.13 at the end of a cloudy day, while it is about 2.84 at the end of sunny day and fluctuates between these values in other times. The COP values for the whole system are also obtained to be 5–15% lower than COPHP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
为了满足农村住宅清洁用能的需求,多种形式的能源系统逐渐开始应用于广大的农村地区。随着太阳能集热器集热效率的提高,热驱动机组各项性能不断改善,这样有利于太阳能吸收式空调系统在农村地区的应用。为了研究太阳能吸收式空调系统与农村住宅全年能耗的匹配问题,文章首先建立了DeST住宅模型,然后利用TRNSYS软件建立了太阳能吸收式空调系统模型,最后根据模拟结果对国内不同气候区内农村住宅供热季、供冷季的平均热负荷值,以及全年的能耗进行分析。此外,文章还分析了典型日太阳能吸收式空调系统的运行策略与效果。分析结果表明:在无辅助热源的条件下,太阳能集热器的集热温度会大于80℃,满足空调机组的热驱动温度,因此可以作为太阳能吸收式空调系统的的热源;当启动温度为85℃时,空调机组的制冷量可以达到8 kW,性能系数COP为0.733。  相似文献   

17.
The active solar heating system consists of the following sub-systems: (1) a solar thermal collector area, (2) a water storage tank, (3) a secondary water circuit, (4) a domestic hot water (DHW) preparation system and (5) an air ventilation/heating system. An improved model for the secondary water circuit is proposed and two interconnection schemes for sub-systems (4) and (5) are analyzed. The integrated model was implemented to Pirmasens passive house (Rhineland Palatinate, Germany). Both interconnection schemes show that (almost all) the solar energy collected is not used for space heating but for domestic hot water preparation. The classical water heater operates all over the year and the classical air heater operates mainly during the nights from November to April. The yearly amount of heat required by the DHW preparation system is about 77% of the yearly total heat demand of the passive house and the classical water heater provides about 20% of the yearly heat required by the DHW preparation system. The solar fraction lies between 0.247 in January and 0.930 in August, with a yearly average of 0.597.  相似文献   

18.
Space heating/cooling systems account for approximately 40% of the global energy consumption. Such systems contribute to global warming by emitting 4×1010 MWh of heat and 3×1010 tons of CO2. There is a general understanding that the way to reduce global warming is a more efficient use of energy and increased use of renewable energy in all fields of the society. Ground‐coupled heating/cooling systems, which have proven to make huge contributions in reducing energy consumption in Europe and North America, is here applied for poultry industry in Syria, as an example for the Middle East. There are e.g. 13 000 chicken farms in Syria producing 172 000 tons of meat per year. This industry employs directly almost 150 000 people. The total investments in chicken farming are 130 BSP (2 B€). The annual mean air temperature in Syria is 15–18°C with winter temperatures close to freezing during two months. The chickens need a temperature of 21–35°C, depending on age, and the heating of all Syrian chicken plants consume 173×103 tons of coal (1196 GWh). In the summer time, the ambient air temperature in Syria could reach above 45°C. The chicken farms have no cooling systems since conventional cooling system is too expensive. The elevated temperature inside the farms reduces the chicken growth and lots of chicken die of overheating. The ground temperature at 10 m depth is roughly equal to the annual mean air temperature. Using the ground as a heat source means a sustainable and less expensive heating of the chicken farms. During the summer, the ground is used as a source for free cooling, i.e. used directly for cooling of the plants without any cooling machines. Current study shows the design and simulated operation of a ground‐coupled heating/cooling system for a typical chicken farm in Syria. Performed national potential study showed that the implementation of such ground coupled heating and cooling systems in the Syrian poultry sector would mean increased poultry production and considerable savings in money, energy, and the environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This communication presents the periodic heat transfer analysis for solar space heating of an unconditioned building with an integrated roof air heater. The system consists of an air duct within the roof such that the air is continuously or intermittently forced to circulate the cooler room air through the inlet of the air duct. Time dependence of the air flow is represented by a step function of time for daily operation and, hence, has been expressed as a Fourier series in time. The analysis takes into account air ventilation, ground heat conduction and furnishings. The effects of depth of the air duct from the outer surface of the roof and the magnitude and duration of air flow rate on indoor air temperature have been studied for a typical cold winter day in Delhi. It is seen that a time dependent air flow through the duct is desirable from the point of view of increasing the indoor air temperature in the case of a bare roof. However, in the case of a blackened and glazed roof, continuous air flow is needed for increasing the room air temperature. The results are desirable from the point of view of efficient space heating of solar passive buildings.  相似文献   

20.
利用太阳能集热器制得低温热水作为地板辐射采暖系统的热源,是一种清洁、节能、舒适的采暖方式。在南京地区搭建了太阳能地板辐射采暖系统实验台,系统运行策略为白天集热、夜晚采暖,通过实验得到了集热器集热效率、地板进出水温度、室内不同朝向围护结构温度、不同高度的空气温度等参数,最后对系统的性能进行了概括和总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号