首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied TGF-beta mediated G1 arrest in WM35, an early stage human melanoma cell line. These cells have lost p15INK4B expression through loss of one chromosome 9 and rearrangement of the other. In asynchronously growing WM35, TGF-beta caused reductions in cyclin D1, cyclin A and cdk4 proteins and their associated kinase activities and an increase in both p21Cip1/WAF1 and p27Kip1. These findings were confirmed in cells released from quiescence in the presence of TGF-beta, in which TGF-beta inhibited or delayed the reduction in the cdk inhibitors that normally occurs in late G1. In contrast to observations in other cell types, there was an increased association of both p21Cip1/WAF1 and p27Kip1 with cyclin D1/cdk4 and with cyclin E/cdk2 during TGF-beta mediated arrest of asynchronously growing cells. Upregulation of p21Cip1/WAF1 preceded that of p27Kip1. Furthermore, p21Cip1/WAF1 and p27Kip1 were not present in the same cdk complexes but bound distinct populations of target cdk molecules. Both p21Cip1/WAF1 and p27Kip1 immunoprecipitates from asynchronously growing cells contained active kinase complexes. These KIP-associated kinase activities were reduced in TGF-beta arrested cells. It has been proposed that in TGF-beta arrested epithelial cells, up-regulation of p15INK4B and of p15INK4B binding to cdk4 serves to destabilize the association of p27Kip1 with cyclin D1/cdk4, promoting p27Kip1 binding and inhibition of cyclin E/cdk2. Our findings demonstrate that this is not a universal mechanism of G1 arrest by TGF-beta. In TGF-beta arrested WM35, which lack p15INK4B, the increased p21Cip1/WAF1 may serve a similar function to that of p15INK4B: initiating kinase inhibition and providing an additional mechanism to supplement the effect of p27Kip1 on G1 cyclin/cdks.  相似文献   

2.
3.
To explore the regulation and function of D-type cyclins in breast cancer cells, the mouse mammary hyperplastic epithelial cell line TM2H was treated with 5 mM hexamethylenebisacetamide (HMBA), a polar differentiation factor. The resulting growth-inhibitory effect of HMBA was completely reversible and was analyzed in terms of percent cells in G1; association of D-type cyclins with cyclin-dependent kinase (cdk) 4 and cdk6; G1 kinase activity; association of retinoblastoma protein (pRb) and phosphorylated pRb with D-type cyclins; and association of p16INK4a, p15INK4b, and p27Kip1 with cdk4 and cdk6. Synchronized TM2H cells were examined at 0, 3, 5, 9, 12, and 24 h after exposure to 5 mM HMBA. Inhibition of DNA synthesis, as measured by thymidine uptake, was first observed at 5 h (40%) and peaked at 24 h (80%). Flow cytometry at 9 h showed treated cells to be in G1 arrest. Western blot analysis showed weakly detectable cyclin D1 but readily detectable cyclin D2 and D3 proteins at 0 h; thereafter, cyclin D2 and D3 protein levels remained higher while cyclin D1 levels declined significantly in treated versus untreated cells. By 5 h (early G1), HMBA had markedly inhibited cdk4 and cdk6 kinase activity (67% and 75%, respectively) in treated versus untreated cells. By 9 and 12 h, pRb levels had increased 3.4-fold in treated versus untreated cells. At 5 h, cyclin D-associated pRb was totally hypophosphorylated in treated cells and hyperphosphorylated in untreated cells. The levels of pRb associated with cyclin D2 and D3 increased 2.89-fold and 4.6-fold, respectively, in treated versus untreated cells. At 5 h, treated cells showed a fivefold increase in cdk4-associated p27Kip1 and, at 9 h, a fourfold increase in cdk6-associated p27Kip1 over control levels. In confirmation of these data, HMBA was found to inhibit the growth of Rb-positive Du/145Rb cells but not their Rb-negative parental Du/145 cells. The data suggest that HMBA-induced growth inhibition is due to multifactorial mechanisms involving decreases in total cyclin D1 and inhibition of cdk4 and cdk6 kinase activities through elevation of levels of cdk4- and cdk6-associated p27Kip1 and concomitant increases in hypophosphorylated pRb and stable cyclin D2/pRb and cyclin D3/pRb complexes that help maintain pRb in a functional state.  相似文献   

4.
New functional activities for the p21 family of CDK inhibitors   总被引:2,自引:0,他引:2  
The association of cdk4 with D-type cyclins to form functional kinase complexes is comparatively inefficient. This has led to the suggestion that assembly might be a regulated step. In this report we demonstrate that the CDK inhibitors p21(CIP), p27(KIP), and p57(KIP2) all promote the association of cdk4 with the D-type cyclins. This effect is specific and does not occur with other cdk inhibitors or cdk-binding proteins. Both in vivo and in vitro, the abundance of assembled cdk4/cyclin D complex increases directly with increasing inhibitor levels. The promotion of assembly is not attributable to a simple cell cycle block and requires the function of both the cdk and cyclin-binding domains. Kinetic studies demonstrate that p21 and p27 lead to a 35- and 80-fold increase in K(a), respectively, mostly because of a decrease in K(off). At low concentrations, p21 promotes the assembly of active kinase complexes, whereas at higher concentrations, it inhibits activity. Moreover, immunodepletion experiments demonstrate that most of the active cdk4-associated kinase activity also associates with p21. To confirm these results in a natural setting, we examine the assembly of endogenous complexes in mammary epithelial cells after release from a G(0) arrest. In agreement with our other data, cyclin D1 and p21 bind concomitantly to cdk4 during the in vivo assembly of cdk4/cyclin D1 complexes. This complex assembly occurs in parallel to an increase in cyclin D1-associated kinase activity. Immunodepletion experiments demonstrate that most of the cellular cyclin D1-associated kinase activity is also p21 associated. Finally, we find that all three CIP/KIP inhibitors target cdk4 and cyclin D1 to the nucleus. We suggest that in addition to their roles as inhibitors, the p21 family of proteins, originally identified as inhibitors, may also have roles as adaptor proteins that assemble and program kinase complexes for specific functions.  相似文献   

5.
6.
7.
8.
Loss of attachment to an extracellular matrix substrate arrests the growth of untransformed cells in the G1 phase. This anchorage-dependent cell cycle arrest is linked to increased expression of the p21Cip1 (p21) and p27Kip1 (p27) cyclin-dependent kinase inhibitors. The result is a loss of cdk2-associated kinase activity, especially that of cyclin E-cdk2. The levels of p21 and p27 are also upregulated in unattached transformed cells, but cyclin E-cdk2 activity remains high, and the cells are able to grow in an anchorage-independent manner. Increased expression of cyclin E and cdk2 appears to be partially responsible for the maintenance of cyclin E-cdk2 activity in transformed cells. To explore further the regulation of cyclin E-cdk2 in transformed cells, we have analysed the subcellular distribution of cyclin-cdk complexes and their inhibitors in normal human fibroblasts, their transformed counterparts, and in various human tumor cell lines. In substrate-attached normal fibroblasts, cyclin E and cdk2 were exclusively in the nuclear fraction, associated with one another. When normal fibroblasts were detached and held in suspension, cyclin E-cdk2 complexes remained nuclear, but were now found associated with the p21 and p27 cdk inhibitors and lacked histone H1 phosphorylating activity. In contrast, the transformed fibroblasts and tumor cells, which are anchorage-independent, had more than half of their cyclin E, cdk2, p21 and p27 in the cytoplasmic fraction, both in attached and suspended cultures. The cytoplasmic p21 and p27 were bound to cyclin E-cdk2, as well as to complexes containing cyclin A and cyclin D. The nuclear cyclin E-cdk2 complexes from the transformed cells grown in suspension contained only low levels of p21 and p27 and had histone H1 kinase activity. Thus, at least three mechanisms contribute to keeping cyclin E-cdk2 complexes active in suspended anchorage-independent cells: cyclin E and cdk2 are upregulated, as reported previously, cdk inhibitors are sequestered away from the nucleus by cytoplasmic cyclin-cdk complexes, and the binding of the inhibitors to nuclear cyclin E-cdk2 complexes is impaired.  相似文献   

9.
IL-4 is a pleiotrophic cytokine that has been shown to affect cells of the central nervous system. We have demonstrated that IL-4 inhibits DNA synthesis and proliferation in human astroglia expressing IL-4 receptors. In this study, we sought to identify mechanisms that could account for the antimitogenic effects of IL-4. Epidermal growth factor (EGF)-stimulated human astroglia were arrested in G1 phase by IL-4, even though IL-4 stimulated levels of the G1 cyclins, D1 and E. Histone H1 kinase activity of cdk2 immunoprecipitates, however, was sharply reduced by IL-4; impairment of kinase activity was also evident in cyclin E immunoprecipitates, which contained evidence of hypophosphorylated (inactive) cdk2 product. Reduced cyclin E-associated cdk2 activity was not due to impaired cyclin-dependent kinase-activating kinase (CAK) activity, which was unaffected by IL-4. Inactive cyclin E/cdk2 complexes from IL-4 + EGF-treated cells contained, however, strikingly elevated p27Kip1 cdk inhibitor. Elevated p27 was also detectable in whole cell lysates after 24 and 48 h of IL-4 treatment; by 72 h, p27 was no longer elevated. Pretreatment with antisense but not mismatch p27 oligonucleotides attenuated the inhibitory effects of IL-4 on DNA synthesis and histone kinase activity of cyclin E/cdk2 complexes. Antisense p27 also abrogated IL-4-mediated elevation of p27 in whole cell lysates and cyclin E/cdk2 complexes. These findings demonstrate that IL-4 regulates the cell cycle machinery of astroglial cells via a p27Kip1 braking mechanism.  相似文献   

10.
IL-4 activates resting B cells and, in conjunction with cosignals such as anti-IgM (anti-mu) Ab or CD40 ligand, modulates progression of B cells through the cell cycle, leading to proliferation. In this study, we show that the mitogenic combination of IL-4 and anti-mu Ab triggered induction of cyclin D3 and up-regulated cyclin-dependent kinase (cdk) 6 expression, whereas such regulation was not observed in B cells activated by IL-4 or anti-mu Ab alone. Furthermore, cyclin D3 immunoprecipitated fron as associated with cdk6, and the cyclin D3/cdk6 complex was able to phosphorylate recombinant retinoblastoma protein in vitro. In addition, B cells activated with either IL-4 or 1L-13 alone expressed a higher amount of p27kip1 (p27) cdk inhibitor than nonstimulated cells. In contrast, p27 expression was decreased when cells were activated with mitogenic combinations of IL-4 and anti-mu Ab or anti-CD40 mAb. We also observed that the IL-4-mediated inhibition of the proliferation of anti-mu/IL-2- or anti-mu/phorbol 12,13-dibutyrate-activated human leukemic B cells was associated with the maintenance of large amounts of p27 in these cells. These data suggest that IL-4 controls B cell proliferation by action during at least two steps of the regulation of the cell cycle, cyclin D3/cdk6 complex regulation and p27 inhibitor expression.  相似文献   

11.
Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 --> S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.  相似文献   

12.
Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.  相似文献   

13.
Androgen induces prostate cell proliferation in the castrated rat. We hypothesized that G1 cyclins, cyclin-dependent kinases (cdk), and cdk inhibitors mediate this cellular response to mitogenic signals. In this study, induction of cyclins D1, D2, D3, E, and cdks 2, 4, and 6 expression was observed at various time points during testosterone replacement in the ventral prostate of castrated rats. The induction followed prostate epithelium proliferation, which peaked at 48 h and decreased at 120 h during the treatment. The study of cyclin/cdk complex formation revealed that more cyclin D1/cdk4 and cyclin D1/cdk6 complexes were formed at 48 h than at 120 h of treatment, but cyclin D1/cdk2 complexes remained the same. Furthermore, both hyperphosphorylated and hypophosphorylated forms of Rb were detected at 48 h, but only the hypophosphorylated form was detected at 120 h of treatment. p21Cip1, which was very abundant in the ventral prostate of castrated and intact rats, was not detected when the prostate started proliferation and increased gradually as proliferation decreased during the androgen treatment. Meanwhile, p27Kip1 dramatically increased after androgen treatment, and the induction levels were less at the peak of prostate proliferation and higher when proliferation was low. The results presented here suggest that expression of G1 cyclins and their related kinases and kinase inhibitors are well regulated after androgen replacement in the ventral prostate of castrated rats. The cooperation between these cell cycle regulators leads to a well-controlled prostate regeneration.  相似文献   

14.
Cyclin D1 dysregulation and differential inactivation of p16INK4a and Rb have been observed in human lung cancer. In chemically induced mouse lung tumors, the p16INK4a gene is a target of inactivation, and Rb is reduced at the mRNA level (Northern blot) although similar at the protein level (Western blot) when compared to normal lung tissues. The expression of cyclin D1, cdk4, p16INK4a, and Rb protein was examined by immunohistochemistry in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumors. Immunohistochemical staining revealed exclusive nuclear staining of both cyclin D1 and cdk4 that was light to moderate in normal mouse lung tissues, but intense in lung adenomas and adenocarcinomas. Western blot analysis confirmed the increased expression of cyclin D1 and cdk4 in lung tumors compared to normal lung. Immunohistochemical analyses of lung tumors showed focal areas which lacked p16INK4a staining. Expression of p16INK4a, as determined by RT-PCR, was variable in lung tumors. Mutations in p16INK4a were not found by SSCP analysis. Immunohistochemical analyses of normal lung tissues showed intense staining for Rb protein in alveolar epithelial cells and in other lung cell types; however, in the lung tumors the staining intensity was reduced and the distribution was altered. Expression of Rb was detected in normal lung tissues but was barely detectable by Northern blot hybridization in lung tumors. Western blot analysis indicated the presence of both hypophosphorylated and hyperphosphorylated Rb protein in lung tumors and in normal lung tissues. These results suggest that alterations in the cell cycle proteins, cyclin D1, cdk4, p16INK4a, and Rb, may play a role in the acquisition of autonomous growth by adenomas. Furthermore, they demonstrate the importance of immunohistochemical studies to examine expression in tissues that contain multiple cell types, such as the lung, and in tumors that by nature are heterogeneous.  相似文献   

15.
The activation of conditional alleles of Myc induces both cell proliferation and apoptosis in serum-deprived RAT1 fibroblasts. Entry into S phase and apoptosis are both preceded by increased levels of cyclin E- and cyclin D1-dependent kinase activities. To assess which, if any, cellular responses to Myc depend on active cyclin-dependent kinases (cdks), we have microinjected expression plasmids encoding the cdk inhibitors p16, p21 or p27, and have used a specific inhibitor of cdk2, roscovitine. Expression of cyclin A, which starts late in G1 phase, served as a marker for cell cycle progression. Our data show that active G1 cyclin/cdk complexes are both necessary and sufficient for induction of cyclin A by Myc. In contrast, neither microinjection of cdk inhibitors nor chemical inhibition of cdk2 affected the ability of Myc to induce apoptosis in serum-starved cells. Further, in isoleucine-deprived cells, Myc induces apoptosis without altering cdk activity. We conclude that Myc acts upstream of cdks in stimulating cell proliferation and also that activation of cdks and induction of apoptosis are largely independent events that occur in response to induction of Myc.  相似文献   

16.
Recent studies have shown that the cyclin-dependent kinase (cdk) inhibitors play important roles in cell cycle progression in normal cells. Alterations in the cdk inhibitors also appear to be important in cancer development in a number of human tumors. p27Kip1 is a member of the CIP/KIP family of cdk inhibitors that negatively regulates cyclin-cdk complexes. Reduced levels of p27Kip1 protein have been identified in a number of human cancers, and in some cases reduced p27Kip1 is associated with an increase in proliferative fraction. In the present study, we examined p27Kip1 protein by immunohistochemistry in 10 normal and 36 dysplastic epithelia and in 8 squamous cell carcinomas from one anatomical site within the oral cavity, the floor of the mouth. Proliferative activity was assessed in serial sections by determining the expression of the cell cycle proteins Ki-67 and cyclin A. p27kip1 protein was significantly reduced in oral dysplasias and carcinomas compared with that in normal epithelial controls. In addition, there was a significant reduction in p27Kip1 protein between low- and high-grade dysplasias, suggesting that changes in p27Kip1 expression may be an early event in oral carcinogenesis. There was increasing expression of Ki-67 and cyclin A proteins with increasingly severe grades of dysplasia compared with normal controls. Although there was a strong correlation between Ki-67 and cyclin A scores (r2= 0.61) for all categories of disease, there was a weak negative correlation between Ki-67 and p27Kip1 levels (r2 = 0.29) and between cyclin A and p27Kip1 levels (r2 = 0.25). In conclusion, this study has found that a reduction in the proportion of cells expressing p27Kip1 protein is frequently associated with oral dysplasia and carcinoma from the floor of the mouth. Furthermore, reductions in p27Kip1 levels are associated with increased cell proliferation, although other changes likely contribute to altered cell kinetics during carcinogenesis at this site.  相似文献   

17.
The accumulation of G1 cell cycle-related proteins by resting or cycling B cells stimulated with B cell antigen receptor (BCR)- and T helper (Th) cell-derived signals is documented. Resting B cells constitutively express cyclin dependent kinase (cdk)4, cdk2 and the cyclin dependent kinase inhibitor (CKI), p27. The initiation of optimal proliferation with F(ab')2 anti-mu plus paraformaldehyde-fixed CD40 ligand-baculovirus-infected Sf9 cells (CD40L/Sf9 cells) increases accumulation of both cdk4 and cdk2 while decreasing p27 levels. B cells express cyclin D2 early during cycle progression, while cyclin D3 and E are not expressed until 18 h poststimulation and cyclin A by 24 h poststimulation. Cycling B cells express heightened levels of all these cyclins and cdks. Although neither BCR- nor CD40-mediated signals appreciably alter cycling B cell accumulation of cyclins D2, cdk4 and cdk2, the absence of BCR-derived signals results in a decreased accumulation of cyclins D3 and E. Finally, CD40-mediated signals induce resting B cells to accumulate the CKI, p21, while cycling B cells require both BCR- and CD40-mediated signals to maintain increased expression of p21. Thus, a Th cell-derived signal may impact upon both resting and cycling B cell cycle progression, at least in part, by regulating the accumulation of p21. The functional consequences of p21 accumulation as cells enter and move through the cell cycle are discussed.  相似文献   

18.
Compared to normal melanocytes, melanoma cell lines exhibit overexpression of hyperphosphorylated retinoblastoma tumor suppressor protein (Rb) or a marked decrease in, or lack of, expression of Rb. Hyperphosphorylation of Rb results in increased E2F-mediated transactivation of target genes and cell cycle progression. Using a combination of gene disruption and ectopic expression in growth factor-dependent mouse melanocytes, we studied the roles of E2F1 and the p16INK4A and p21WAF1/CIP1 CKIs (cyclin dependent kinase inhibitors) in the acquisition of TPA (12-O-tetradecanoyl phorbol-13-acetate)-independent growth in culture, a hallmark of melanomas. Surprisingly, melanocytes from p16INK4A- or p21WAF1/CIP1-null mice remained TPA-dependent, and disruption of p21WAF1/CIP1 accelerated cell death in the absence of this mitogen. Disruption of E2F1 had the most profound effect on melanocyte growth, resulting in a fourfold decrease in growth rate in the presence of TPA. Furthermore, enforced overexpression of the DNA-binding-defective E2F1E132 mutant conferred TPA-independence upon melanocytes and was associated with sequestration of Rb and constitutive expression of E2F1 target genes, including p21WAF1/CIP1. We conclude that neutralization of Rb by E2F1E132, but not the disruption of p16INK4A or p21WAF1/CIP1, resulted in the accumulation of free E2F and cell cycle progression. Thus, mechanisms other than the loss of p16INK4A or p21WAF1/CIP1 that activate E2F may play an important role in melanomas.  相似文献   

19.
We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2 and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether they will join the majority of cell lines with deregulated Rb pathway.  相似文献   

20.
The pathways that regulate the S-phase events associated with the control of DNA replication are poorly understood. The bone marrow megakaryocytes are unique in that they leave the diploid (2C) state to differentiate, synthesizing 4 to 64 times the normal DNA content within a single nucleus, a process known as endomitosis. Human erythroleukemia (HEL) cells model this process, becoming polyploid during phorbol diester-induced megakaryocyte differentiation. The mitotic arrest occurring in these polyploid cells involves novel alterations in the cdk1/cyclin B1 complex: a marked reduction in cdk1 protein levels, and an elevated and sustained expression of cyclin B1. Endomitotic cells thus lack cdk1/cyclin B1-associated H1-histone kinase activity. Constitutive over-expression of cdk1 in endomitotic cells failed to re-initiate normal mitotic events even though cdk1 was present in a 10-fold excess. This was due to an inability of cyclin-B1 to physically associate with cdk1. Nonetheless, endomitotic cyclin B1 possesses immunoprecipitable H1-histone kinase activity, and specifically translocates to the nucleus. We conclude that mitosis is abrogated during endomitosis due to the absence of cdk1 and the failure to form M-phase promoting factor, resulting in a disassociation of mitosis from the completion of S-phase. Further studies on cyclin and its interacting proteins should be informative in understanding endomitosis and cell cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号