首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel receivers for transmitted-reference ultrawide bandwidth wireless systems are proposed. The new receivers are derived by using iterative algorithms to implement the channel template estimators employed in previous receivers. While the new receiver structures are simple, simulation results confirm their superiority over previous receivers. The performances of the new receivers can be further improved by optimizing the energy allocation between reference symbols and data symbols within one data packet and by optimizing the number of samples used in correlation. Numerical examples show that the optimization can provide performance gains of up to 4 dB in some cases.  相似文献   

2.
In the tensor-based MIMO receivers, the multidimensional MIMO signals first are expressed as a third-order tensor model, wherein the factor matrices of tensor model are corresponding time/frequency, symbols, code/diversity of signals. A algorithm then is used for fitting this tensor mode, in which the symbols are estimated as a independent factor matrix. Although the performance of tensor-based receivers strongly depends on the initializations of the factor matrices. However, due to the absence of a priori on channels, these initializations are done randomly in alternating least squares (ALS), a basic algorithm for fitting the tensor models. In order to avoid these random initializations, this paper proposes two algorithms for fitting the tensor models. The first one, called delta bilinear ALS (DBALS) algorithm, where we exploit the increment values between two iterations of the factor matrices, refine these predictions by using the enhanced line search and use these refined values to initialize for two factor matrices. The second one, called orthogonal DBALS algorithm that takes into account the potential orthogonal in factor matrix for the DBALS algorithm, to provide the initialization for this factor matrix. By this way, we avoid random initializations for three factor matrices of tensor model. The performance of proposed receivers is illustrated by means of simulation results and a comparison is made with traditional ALS algorithm and other receivers. Beside a performance improving, our receivers give a lower complexity due to avoid random initializations.  相似文献   

3.
A modification of the known linear precoding algorithm CLTD (closed-loop transmit diversity) intended for multiuser radio communication systems and using theMIMOtechnology has been proposed. The efficiency of the original precoding algorithm CLTD possessing a number of advantages as compared to earlier precoding methods based on complete information about the communication channel state is enhanced at the expense of introducing nonlinearity. The use of nonlinear procedure of ordered successive interference cancellation (OSIC) in forming the precoding matrix makes it possible to significantly increase the noise immunity of the entire system as a whole at the expense of a slight rise of algorithm computational complexity. In addition, the results of computer simulation are presented reflecting the efficiency of the proposed modification of the algorithm for forming a precoding matrix as compared to the original CLTD algorithm.  相似文献   

4.
MIMO HSDPA(High Speed Downlink PacketAccess)系统采用多天线技术,传统的LMMSE码片均衡算法计算复杂度较高,为降低运算量,本文将SMW定理引入LMMSE算法中,并引入导频抵消模块,提出了一种PC-ILMMSE算法.理论分析与仿真结果表明,新算法的性能优于传统的LMMSE,而运算量大大降低.  相似文献   

5.
In this paper, optimized transmit schemes for multiple-input multiple-output (MIMO) systems with simplified receivers are proposed for the downlink of high-speed wireless communication systems. In these systems, MIMO signal preprocessing is performed at the transmitter or base station with the receiver at the mobile station having a simplified structure that requires only limited signal processing. An important potential application for our transmit MIMO techniques is in the downlink of high-speed wireless communication systems with Vertical Bell Laboratories Layered Space-Time (V-BLAST) or a similar technique utilized in the uplink, creating a high-speed duplex system with a simplified mobile station transceiver structure. Two approaches are introduced and these depend on whether or not receive diversity is employed at the receiver. Both methods require that channel state information be available at the transmitter. In addition, some important associated issues such as peak-to-average power ratio requirements at the transmitter and robustness to downlink channel errors are also investigated and various solutions are proposed. Simulation results are provided and these show that performance improvement can be achieved when compared with other MIMO transmit schemes.  相似文献   

6.
In this paper, the Multiple Input Multiple Output (MIMO) doubly-iterative receiver which consists of the Probabilistic Data Association detector (PDA) and Low-Density Parity-Check Code (LDPC) decoder is developed. The receiver performs two iterative decoding loops. In the outer loop, the soft information is exchanged between the PDA detector and the LDPC decoder. In the inner loop, it is exchanged between variable node and check node decoders inside the LDPC decoder. On the light of the Extrinsic Information Transfer (EXIT) chart technique, an LDPC code degree profile optimization algorithm is developed for the doubly-iterative receiver. Simulation results show the doubly-receiver with optimized irregular LDPC code can have a better performance than the one with the regular one.  相似文献   

7.
In this letter, a novel receive antenna selection technique is proposed for multiple input multiple output (MIMO) spatial multiplexing systems with linear receivers in the presence of unknown interference. This antenna selection technique is directly implemented based on training sample sequence under the least squares (LS) criterion. It avoids the channel estimation and retain the diversity benefit by antenna selection in the presence of unknown multiple access interference (MAI). In addition, practical implementation with manageable complexity is made possible by extending the fast backward greedy algorithm (BGA) into the proposed antenna selection algorithm.  相似文献   

8.
We consider the uplink of massive multiple-input multiple-output systems in a multicell environment. Since the base station (BS) estimates the channel state information (CSI) using the pilot signals transmitted from the users, each BS will have imperfect CSI in practice. Assuming zero-forcing method to eliminate the multi-user interference, we derive the exact analytical expressions for the probability density function of the signal-to-interference-plus-noise ratio, the corresponding achievable rate, the outage probability, and the symbol error rate (SER) when the BS has imperfect CSI. An upper bound of the SER is also derived for an arbitrary number of antennas at the BS. Moreover, we derive the upper bound of the achievable rate for the case where the number of antennas at the BS goes to infinity, and the analysis is verified by presenting numerical results.  相似文献   

9.
Single carrier‐frequency division multiple access (SC‐FDMA) has been adopted as the uplink transmission standard in fourth generation cellular network to enable the power efficiency transmission in mobile station. Because multiuser MIMO (MU‐MIMO) is a promising technology to fully exploit the channel capacity in mobile radio network, this paper investigates the uplink transmission of SC‐FDMA systems with orthogonal space frequency block codes (SFBC). Two linear MU‐MIMO receivers, orthogonal SFBC (OSFBC) and minimum mean square error (MMSE), are derived for the scenarios with limited number of users or adequate receive antennas at base station. In order to effectively eliminate the multiple access interference (MAI) and fully exploit the capacity of MU‐MIMO channel, we propose a turbo MU‐MIMO receiver, which iteratively utilizes the soft information from maximum a posteriori decoder to cancel the MAI. By the simulation results in several typical MIMO channels, we find that the proposed MMSE MU‐MIMO receiver outperforms the OSFBC receiver over 1 dB at the cost of higher complexity. However, the proposed turbo MU‐MIMO receivers can effectively cancel the MAI under overloaded channel conditions and really achieve the capacity of MU‐MIMO channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
We consider the problem of joint space-time decoding and multiaccess interference (MAI) rejection in multiuser multiple-input multiple-output (MIMO) wireless communication systems. We address the case when both the receiver and multiple transmitters are equipped with multiple antennas and when space-time block codes (STBCs) are used to send the data simultaneously from each transmitter to the receiver. A new linear receiver structure is developed to decode the data sent from the transmitter-of-interest while rejecting MAI, self-interference, and noise. The proposed receivers are designed by minimizing the output power subject to constraints that zero-force self-interference and/or preserve a unity gain for all symbols of the transmitter-of-interest. Simulation results show that in multiaccess scenarios, the proposed techniques have substantially lower symbol error rates as compared with the matched filter (MF) receiver, which is equivalent to the maximum likelihood (ML) space-time decoder in the point-to-point MIMO communication case.  相似文献   

11.
We deal with the design of interleavers in a coded code-division multiple-access (CDMA) scenario, where at the receiver an iterative turbo-like structure to perform multiuser detection is employed. The choice of the interleavers affects both the maximum-likelihood (ML) performance and the impact of the suboptimality of the iterative receiver. First, heuristic criteria of goodness for a set of interleavers, each assigned to a given active user, are introduced and motivated. One of these criteria is based on the intersection between the equivalent codes seen after the interleavers for each user pair. The design rules are valid for any kind of channel code. In particular, when the channel code used by every user is a terminated convolutional code, a very simple design rule, in the subset of congruential interleavers, is specified. The suitability of an interleaver set to iterative decoding is also treated. The analysis leads to a design rule which is shown to have great importance on the performance of a turbo-like receiver. Numerical results assess the validity of the derived design rules by showing that, for iterative multiuser receivers and reasonable block lengths, the suitability to iterative decoding is more important than the performance optimization.  相似文献   

12.
Iterative turbo processing between detection and decoding shows near-capacity performance on a multiple-antenna system. Combining iterative processing with optimum front-end detection is particularly challenging because the front-end maximum a posteriori (MAP) algorithm has a computational complexity that is exponential. Sub-optimum detector such as the soft interference cancellation linear minimum mean square error (SIC-LMMSE) detector with near front-end MAP performance has been proposed in the literature. The asymptotic computational complexity of SIC-LMMSE is O(nt 2nr + ntnr 3 + ntMc2Mc) per detection-decoding cycle where nt is number of transmit antenna, nr is number of receive antenna, and Mc is modulation size. A lower complexity detector is the hard interference cancellation LMMSE (HIC-LMMSE) detector. HIC-LMMSE has asymptotic complexity of O(nt 2nr + ntMc2Mc) but suffers extra performance degradation. In this paper, two front-end detection algorithms are introduced that not only achieve asymptotic computational complexity of O(nt 2nr + ntnr 2 [Gamma (beta) + 1] + ntMc2Mc) where Gamma(beta) is a function with discrete output {-1, 2, 3, ...,nt} and O(ntMc2Mc) respectively. Simulation results demonstrate that the proposed low complexity detection algorithms offer exactly same performance as their full complexity counterpart in an iterative receiver while being computational more efficient.  相似文献   

13.
Telecommunication Systems - High power consumption and hardware cost are the two challenges for practical massive MIMO systems. One promising solution is to employ low resolution analog to digital...  相似文献   

14.
The iterative MMSE multiuser detection paradigm is applied to the suppression of cochannel interference in the coded narrowband (multicell) uplink. The equivalent of multiple chips per bit (necessary for MMSE multiuser demodulation) is generated via multisensor reception, the array responses serving as user signatures. This receiver's robustness to overloading allows its sensor count to be much lower than the typical number of other-cell cochannel interferers. A permutation transmit diversity technique that exploits channel time-selectivity is proposed in order to enhance the interuser separation afforded by multisensor reception.  相似文献   

15.
Telecommunication Systems - One of the main requirements for next generation mobile or wireless communication systems is to effectively support a large number of machine type communication (MTC)...  相似文献   

16.
In this letter, we study the design of expectation-maximization (EM)-based iterative receivers for multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing systems with the presence of carrier-frequency offset (CFO). Motivated by the spirit of maximum-likelihood estimation in the EM algorithm, we first present a pilot-aided CFO estimation scheme that allows fast Fourier transform-based fast implementation. Then this CFO estimation is incorporated into the initialization step of the iterative receiver. Experimental results show the effectiveness of our receiver design in combating CFO.  相似文献   

17.
Iterative methods to solve a linear equation system can be used to derive multistage interference cancellers (ICs) that converge to the decorrelating or the minimum mean-square error linear detectors. The link between linear multistage IC and iterative solution methods is well known; however, the parameters needed for fastest convergence are functions of the eigenvalues of the channel matrix. In this letter, we propose new methods for finding optimal parameters without eigendecomposition.  相似文献   

18.
In this paper, the problem of designing linear precoders for fixed multiple-input-multiple-output (MIMO) receivers is considered. Two different design criteria are considered. In the first, the transmitted power is minimized subject to signal-to-interference-plus-noise-ratio (SINR) constraints. In the second, the worst case SINR is maximized subject to a power constraint. It is shown that both problems can be solved using standard conic optimization packages. In addition, conditions are developed for the optimal precoder for both of these problems, and two simple fixed-point iterations are proposed to find the solutions that satisfy these conditions. The relation to the well-known uplink-downlink duality in the context of joint transmit beamforming and power control is also explored. The proposed precoder design is general, and as a special case, it solves the transmit rank-one beamforming problem. Simulation results in a multiuser system show that the resulting precoders can significantly outperform existing linear precoders.  相似文献   

19.
A novel iterative singular vector estimation scheme has been proposed for a beamforming transmission and detection in wireless multiple input multiple output (MIMO) systems. Two singular channel matrix vectors, which correspond to the largest singular value, are iteratively obtained at the transmitter and the receiver without estimating the channel coefficients. The proposed singular vectors estimation strategy has advantages over the conventional MIMO channel estimation schemes in terms of both frame-error-rate performance, bandwidth efficiency and computation complexity.  相似文献   

20.
This letter investigates generalized-likelihood-ratio-test (GLRT) detectors for ultra-wideband (UWB) impulse radio systems employing two alternative signaling schemes. One is the so-called transmitted reference method where, in each time frame, a reference pulse is transmitted prior to the data pulse. The other is the differential transmitted reference scheme, wherein the data pulse received in the previous frame is used as a template waveform in the current frame. The two detectors are compared in terms of bit error rate performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号