首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative analysis was made of subchondral replacement with polymethylmethacrylate and autogeneic bone grafts in defects in the medial femoral condyles of dogs. The defect produced a 50% reduction in subchondral stiffness. An in vitro preparation helped establish that subchondral stiffness returned to normal after reconstruction with polymethylmethacrylate. The in vivo model demonstrated a reduction in subchondral stiffness in both groups at three weeks, but the bone grafted side returned to normal and the methylmethacrylate side recovered to 79% of the control at 12 weeks. There were no deleterious effects on the articular cartilage in either group when analyzed histologically and biochemically. A marked increase in new bone formation and subchondral porosity was found in the polymethylmethacrylate groups. This study supports the clinical use of subchondral polymethylmethacrylate after the exteriorization and curettage of benign bone tumors such as giant cell tumors.  相似文献   

2.
This pilot study analyzed the bone reactions to early loaded titanium plasma-sprayed implants. A total of 24 titanium plasma-sprayed implants (12 in the maxilla and 12 in the mandible) (Primary Healing Implant, Legnano) were inserted into four Macaca fascicularis monkeys with instruments specially designed to obtain a precise fit of the implant in the bone socket. A metal superstructure was cemented into 10 mandibular and 10 maxillary implants 15 days after implant insertion. The four remaining implants were used as controls. Eight months after implant placement, a block section was carried out, the defect was filled with nonresorbable hydroxyapatite, and all 24 implants were retrieved. The implants were treated to obtain thin ground sections that were examined under normal and polarized light. Histologic analysis showed that bone was observed around the implant surface in all implants. Morphometric analysis demonstrated that bone lined 67.2% (SD = 3.1%) of the maxillary implant surface, and 80.71% (SD = 4.6%) of the mandibular implant surface. No differences were found in the percentage of bone-implant contact in the control implants. In the loaded implants, however, the bone around the implants had a more compact appearance. The study demonstrated that it is possible to obtain a high percentage of bone-implant contact in early loaded titanium plasma-sprayed implants.  相似文献   

3.
The purpose of this study was to determine which treatment of a large osseous defect adjacent to an endosseous dental implant would produce the greatest regeneration of bone and degree of osseointegration: barrier membrane therapy plus demineralized freeze-dried bone allograft (DFDBA), membrane therapy alone, or no treatment. The current study histologically assessed changes in bone within the healed peri-implant osseous defect. In a split-mouth design, 6 implants were placed in edentulous mandibular ridges of 10 mongrel dogs after preparation of 6 cylindrical mid-crestal defects, 5 mm in depth, and 9.525 mm in diameter. An implant site was then prepared in the center of each defect to a depth of 5 mm beyond the apical extent of the defect. One mandibular quadrant received three commercially pure titanium (Ti) screw implants (3.75 x 10 mm), while the contralateral side received three hydroxyapatite (HA) coated root-form implants (3.3 x 10 mm). Consequently, the coronal 5 mm of each implant was surrounded by a circumferential defect approximately 3 mm wide and 5 mm deep. The three dental implants in each quadrant received either DFDBA (canine source) and an expanded polytetrafluoroethylene membrane (ePTFE), ePTFE membrane alone, or no treatment which served as the control. Clinically, the greatest increase in ridge height and width was seen with DFDBA/ePTFE. Histologically, statistically significant differences in defect osseointegration were seen between treatment groups (P < 0.0001: DFDBA/ePTFE > ePTFE alone > control). HA-coated implants had significantly greater osseointegration within the defect than Ti implants (P < 0.0001). Average trabeculation of newly formed bone in the defect after healing was significantly greater for HA-coated implants than for titanium (P < 0.0001), while the effect on trabeculation between treatments was not significantly different (P = 0.14). Finally, there were significantly less residual allograft particles in defect areas adjacent to HA-coated implants than Ti implants (P = 0.0355). The use of HA-coated implants in large size defects with DFDBA and ePTFE membranes produced significantly more osseointegration histologically than other treatment options and more than Ti implants with the same treatment combinations. The results of this study indicate that, although the implants appeared osseointegrated clinically after 4 months of healing, histologic data suggest that selection of both the implant type and the treatment modality is important in obtaining optimum osseointegration in large size defects.  相似文献   

4.
The objective of our study was to evaluate reparative tissues formed in chondral defects in an adult canine model implanted with cultured autologous articular chondrocytes seeded in type I and II collagen GAG matrices. Two defects were produced in the trochlea grooves of the knees of 21 dogs, with cartilage removed down to the tidemark. This study includes the evaluation of 36 defects distributed among five treatment groups: Group A, type II collagen matrix seeded with autologous chondrocytes under a sutured type II collagen flap; Group B, type I collagen matrices seeded with chondrocytes under a sutured fascia flap; Group C, unseeded type I collagen matrix implanted under a sutured fascia flap; Group D, fascia lata flap alone; and Group E, untreated defects. All animals were killed 15 weeks after implantation. Six other defects were created at the time of death and evaluated immediately after production as 'acute defect controls'. In three additional defects, unseeded matrices were sutured to the defect and the knee closed and reopened after 30 min to determine if early displacement of the graft was occurring; these defects served as 'acute implant controls'. The areal percentages of four tissue types in the chondral zone of the original defect were determined histomorphometrically: fibrous tissue (FT); hyaline cartilage (HC); transitional tissue (TT, including fibrocartilage); and articular cartilage (AC). New tissue formed in the remodeling subchondral bone underlying certain defects was also assessed. Bonding of the repair tissue to the subchondral plate and adjacent cartilage, and degradation of the adjacent tissues were evaluated. There were no significant differences in the tissues filling the original defect area of the sites treated with chondrocyte-seeded type I and type II matrices. Most of the tissue in the area of the original defect in all of the groups was FT and TT. The areal percentage of HC plus AC was highest in group E, with little such tissue in the cell-seeded groups, and none in groups C and D. The greatest total amount of reparative tissue, however, was found in the cell-seeded type II matrix group. Moreover, examination of the reparative tissue formed in the subchondral region of defects treated with the chondrocyte-seeded collagen matrices (Groups A and B) demonstrated that the majority of the tissue was positive for type II collagen and stained with safranin O. These results indicate an influence of the exogenous chondrocytes on the process of chondrogenesis in this site. In all groups with implants (A-D), 30(50% of the FT and TT was bonded to the adjacent cartilage. Little of this tissue (6-22%) was attached to the subchondral plate, which was only about 50% intact. Remarkable suture damage was found in sections from each group in which sutures were used. Harvest sites showed no regeneration of normal articular cartilage, 18 weeks after the biopsy procedure. Future studies need to investigate other matrix characteristics, and the effects of cell density and incubation of the seeded sponges prior to implantation on the regenerative response.  相似文献   

5.
The response of mandibular bone to identical geometry LTI carbon, carbon-coated aluminum oxide, and uncoated aluminum oxide blade-type dental implants in baboons for 2 years was evaluated using histologic, microradiographic, and scanning electron microscopic methods. In addition, a quantitative histologic analysis was performed identifying the type, amount, and distribution of tissue surrounding the dental implant systems. This is the final phase of a study investigating the effect of implant elastic modulus and implant surface chemical composition on the performance of dental implants. Previous studies have utilized clinical and radiographic evaluations, postretrieval mechanical testing, and finite element stress analysis to evaluate the dental implant performance. The results of the histologic study revealed a direct implant-bone interface with no intervening soft tissue in 16 of the 21 implants (76%). A fibrous tissue interface was observed in 5 of 21 implants (24%). Quantitative histologic results for the implants with a direct implant-bone interface showed statistically larger crestal cortical plates (p less than 0.05) and greater area fraction crestal cancellous bone (p less than 0.05) in the LTI carbon implant compared to the carbon-coated and uncoated aluminum oxide implants. The carbon-coated and uncoated aluminum oxide implants demonstrated statistically greater area fraction cancellous bone at the inferior region of the implant (p less than 0.05) and thinned and reduced crestal cortical plates when compared to the LTI carbon implants. The results indicate that significant stress shielding of the crestal bone had occurred with the rigid carbon-coated and uncoated aluminum oxide implants when compared to the LTI carbon implants which had a material elastic modulus similar to cortical bone. Based upon the histologic results, it appears that the LTI carbon implants with the direct implant-bone interface exhibited a greater potential for long-term successful performance compared to the aluminum oxide substrate implants.  相似文献   

6.
A painful arthritic knee with severe valgus deformity may be treated successfully with total knee arthroplasty using several techniques: constrained implant with lateral release, nonconstrained implant with lateral release and a thick tibial insert, or nonconstrained implant with lateral release and medial reconstruction. Eight patients with Type II valgus deformity were treated with nonconstrained total knee arthroplasty implants, lateral ITB release at the level of the tibial osteotomy, and proximal medial collateral ligament advancement with bone plug recession. The reconstruction led to predictably successful outcomes in all patients at 4- to 9-years followup. All patients were satisfied with the operation. All knees were stable with a functional range of motion at the time of last followup.  相似文献   

7.
The biocompatibility of nitinol alloy as a potential implant material was investigated through in vivo studies on beagles. A high-purity alloy was fabricated into prototype bone plates and implanted into the femurs of beagles. Commercial cobalt-chromium (Co-Cr) alloy bone plates served as reference controls, an additional control data were obtained from beagles subjected to "sham" operations. The bone plates were removed from the animals and examined after exposures of 3, 6, 12, and 17 months. There was no evidence of either localized or of general corrosion on the surfaces of the bone plates and screws. Gross clinical, radiological, and morphological observations of the tissue at the implantation sites during the autopsies uncovered no signs of adverse tissue reactions resulting from the implants. Histological analyses were performed on samples of muscle and bone adjacent to the implantation sites, and of tissues removed from such organs as the liver, spleen, brain, and kidneys. No significant differences were noted between samples taken from controls and those taken from dogs exposed to the implants. Neutron activation analyses were carried out on suitable samples. The analysis data suggest that there is no metallic contamination in the organs due to the implants; however, there does appear to be some chromium contamination from the Co-Cr alloy implants in the adjacent bone. On the basis of the totality of the data, it is concluded that nitinol alloy is sufficiently compatible with dog tissue to warrant further investigation of its potential as a biomaterial.  相似文献   

8.
Osteoarthritis is usually considered to be a primary disorder of chondrocyte function with secondary changes in bones. However, a defect in the subchondral bone resulting in loss of its shock absorbing capacity could transfer the stress of loading directly to the articular cartilage with secondary changes in the cartilage. Review of histomorphometric and bone densitometric studies at sites of osteoarthritis at the hip or knee revealed that cartilage fibrillation could not be dissociated from bony changes even in the earliest stages of osteoarthritis and that subchondral trabeculae are thickened and more spaced in osteoarthritis. Microfractures of subchondral trabecular bone were less frequently seen in osteoarthritis compared to controls. Changes of the tidemark were found to be multiform and metabolically active in the osteoarthritic process. Endochondral ossification depletes the calcified cartilage at the cartilage/bone interface and the tidemark has been thought of as a calcification front advancing in the direction of non-calcified cartilage. Duplication of the tidemark is cited as evidence of this advancement. In the few experimental animal studies of subchondral bone in osteoarthritis, thicker trabeculae which were closer together were found in guinea pigs already when only mild cartilage changes were present. In the dog, with cruciate ligament transection, changes in bone were later than in the cartilage, but the changes in bone could still contribute to the progression of osteoarthritis. To study if bone changes may precede injury to the cartilage and if metabolic and systemic influences can also alter the subchondral bone, rendering it less able to withstand normal mechanical stresses, bone at different sites in the body has been studied extensively by the authors. Epidemiological and case control studies have revealed that osteoarthritis cases have more bone at all sites than expected and that bone in cases with generalized osteoarthritis shows both quantitative and qualitative differences, including increased contents of growth factors and hypermineralization. These findings suggest that a more generalized bone alteration may be the basis of the pathogenesis of osteoarthritis.  相似文献   

9.
Six healthy adult male mongrel dogs underwent cranial cruciate ligament transection in the left stifle. Survey radiography of both stifles and low-field (0.064 T) MRI of the left stifle were performed preoperatively and at 2, 6, and 12 weeks postoperatively. Focal changes in signal intensity were seen with MRI in the subchondral bone of the medial tibial condyle at 2 and 6 weeks postoperatively. At 12 weeks postoperative, a cyst-like lesion was detected using MRI in the subchondral bone of the medial tibial condyle in 4 of 6 dogs and a less defined lesion at this site in the remaining 2 dogs. The cyst-like lesion was spherical in shape and showed typical characteristics of fluid with low signal intensity on T1-weighted images, high signal intensity on T2-weighted images and high signal intensity on inversion recovery images. The lesion was seen in the subchondral bone of the caudal medial and/or middle region of the tibial plateau slightly cranial to the insertion of the caudal cruciate ligament. No subchondral cysts were seen in the tibia on radiographs. Histopathologically, the tibia was characterized by a loose myxomatous phase of early subchondral cyst formation.  相似文献   

10.
Articular cartilage has a limited capacity for repair. We investigated the effect of rhBMP-2 (recombinant human bone morphogenetic protein-2) on the healing of full-thickness osteochondral defects in adult New Zealand White rabbits. A single defect, three millimeters wide by three millimeters deep, was created in the trochlear groove of the right femur in eighty-nine rabbits. The defect was either left empty, filled with a plain collagen sponge, or filled with a collagen sponge impregnated with five micrograms of rhBMP-2. The animals were killed at four, eight, or twenty-four weeks, and the repair tissue was examined histologically and evaluated with use of a grading scale. The defects also were examined immunohistochemically for the presence of type-II collagen at four and eight weeks. The rate of bone repair was evaluated with fluorescent labeling of bone at two and four weeks and with use of fluorescence microscopy at eight weeks. Treatment with rhBMP-2 greatly accelerated the formation of new subchondral bone and improved the histological appearance of the overlying articular surface. At twenty-four weeks, the thickness of the repair cartilage was 70 per cent that of the normal adjacent cartilage and a new tidemark usually had formed between the repair cartilage and the underlying subchondral bone. The average total scores on the histological grading scale were significantly better (p < 0.01) for the defects treated with rhBMP-2 than for the untreated defects (those left empty or filled with a plain collagen sponge) at all time-points. Immunostaining with an antibody against type-II collagen showed the diffuse presence of this cartilage-specific collagen throughout the repair cartilage in the treated defects. The untreated defects demonstrated minimum staining with this antibody.  相似文献   

11.
Historically, pyrolytic carbon has been a material for cardiovascular applications, but it has several properties suited for orthopedic uses as well. Pyrolytic carbon has an elastic modulus similar to bone and is highly fatigue resistant, but has not been used in orthopedics because of poor fixation to bone. Plasma sprayed hydroxylapatite (HA) has significantly improved the bonding of bone to titanium alloy implants. The effect of plasma-sprayed HA on pyrolytic carbon implants was investigated in this study. Cylindrical samples were implanted through a single cortex in Beagle femurs. The animals were sacrificed after 8 weeks, and a mechanical push-out test was performed on the implants immediately after explantation. Samples were microradiographed, stained for histology, and examined histomorphometrically. Interface strength for each type of implant was calculated. Pyrolytic carbon showed almost no attachment strength with an average strength value of 1.59 MPa. HA-coated pyrolytic carbon (8.71 MPa) yielded the same interfacial strength as HA-coated titanium (8.71 MPa). Histology revealed that bone was in direct apposition to all implants, both HA coated and noncoated. Failures occurred between the core material and the coating, or within the coating, but not at the bone/HA interface. Histomorphometry results confirmed that the two types of HA-coated implants had more bone apposition than the uncoated pyrolytic carbon implants. It was concluded that a plasma sprayed HA coating significantly improves the bone fixation of pyrolytic carbon.  相似文献   

12.
The aim of the present experimental investigation was to study the morphological and dimensional changes of bone, augmented at titanium implants by a membrane technique, taking place after membrane removal. In 12 rabbits, screw-shaped titanium implants were inserted in the tibial metaphyses in such a way that 5 threads became uncovered with bone. Surgery was performed on 2 occasions in order to retrieve specimens with different follow-up times. An e-PTFE barrier and a titanium device were used to provide space for bone formation. In 1 tibia of each rabbit, the membranes and spacers were removed after 8 weeks of healing, and the implants followed for 16 more weeks. Impressions were taken at day 0 and after 8 and 24 weeks of healing and plaster models were produced. In the contralateral tibiae, implants were inserted either 16 or 8 weeks prior to sacrifice. Measurements were made on the plaster models in 3 dimensions at 35 points around each implant in a coordinate measuring machine. Specimens taken 8, 16 and 24 weeks after insertion were analysed by means of light microscopical morphometry. The coordinate measurements showed that, in mean, 1.92 mm of bone had been formed during the first 8 weeks. A statistically significant loss of the height of the newly formed bone (0.70 mm) and thereby reduction of bone volume was found 24 weeks postoperatively. The volume decrease of the newly formed bone was more pronounced beside the implants than over the implant body. The histology showed that woven bone had been formed at the implants after 8 weeks. Further bone formation and remodelling and a net increase of mineralized bone were seen. The degree of bone-implant contact and bone area in the threads increased with time. The present study showed that coordinate measurements on plaster models, obtained from the experimental areas, in combination with histology, form a useful technique to study long-term changes of augmented bone. It was found that bone formed by a barrier membrane technique, decreased in volume during a 16-week follow-up period after barrier removal. Less dimensional changes were observed for the bone formed over the implant body, indicating that a solid surface may have a stabilizing effect on the augmented bone.  相似文献   

13.
Full thickness defects (diameter 1,7 mm; depth 2,5 mm) were created mechanically in articular cartilage and subchondral bone of the condyles of tibiotarsal joints of 9-month old chickens. This full-thickness defects were repaired with cultured allogenic embryonic chick epiphyseal chondrocytes from the tibiae and femura of 10-days-old chicken embryos. The cells were embedded in a collagen-fibrinogen-matrix. Controls were similarly operated, but received either no treatment or implants the delivery substance only. Healing of the defects was observed macroscopically, histologically, histochemically and histomorphometrically after 3, 12 and 24 weeks. This graft was successfully transplanted in mechanically induced defects in 80%. The resulting hyaline cartilage was structurally reorganized according to the host pattern and under the influence of environmental conditions. The articular zone preserved it's cartilaginous phenotype, whereas the subchondral regions were transformed into bone. 12 weeks after the operation the defects in the experimental group were completely filled. In all instances in this group, there was an initial extreme increase of mitotic rate and cell number. After 24 weeks normal and subnormal values were founded. The defects in the control groups healed with fibrocartilage. Our results showed, that only the defects in the experimental group were completely filled with reparative hyaline cartilage tissue. In the present study the mixture of cultured allogenic embryonic chondrocytes and a collagen-fibrinogen-matrix was used successfully as a transplant for repairing defects in articular cartilage of chickens. Thus allogenic transplantation of cultured embryonal chondrocytes appears to be one of the most promising methods for the restoration of articular cartilage.  相似文献   

14.
The Endopore implant provides a novel method for reliable fixation of endosseous dental implants within the bone. Through the use of a porous-surfaced zone formed by sintering Ti alloy particles of the appropriate size and under appropriate processing conditions to a sold Ti alloy core of desired shape (tapered truncated cone), an implant is now available that can be placed using a relatively simple surgical procedure using either surgical burs or hand osteotomes. Of even greater value is the suitability of this implant design for treatment of cases that because of minimal bone height cannot be treated routinely using other currently-available implants. The high success rates experienced with significantly shorter implant lengths compared with other designs indicate the appropriateness of this system for difficult-to-treat cases. The Endopore system represents the next generation of endosseous dental implants characterized by uncomplicated and reliable treatment for a wider range of dentally-compromised patients. Its history is founded on extensive and fully-documented research at the human preclinical stage as well as human use experiences. The results during the past nine years have confirmed the high expectations that those early studies suggested.  相似文献   

15.
OBJECTIVES: To determine the effects of tubular resorbable polymer membranes on the healing of a segmental diaphyseal bone defect. DESIGN: A randomized prospective study using the minipig model. Animals were evaluated with in vivo roentgenograms on a biweekly basis until explanted at twelve weeks. SETTING: After surgery, animals were allowed unrestricted activity and weight bearing between twenty-four and forty-eight hours. ANIMALS: Fifteen yearling Yucatan minipigs. INTERVENTION: A 2.5- to 3.0-centimeter mid-diaphyseal defect was created in the middle third of the radius. Animals were assigned in groups of three to receive the following implants: (a) poly(L/DL-lactide), (b) poly(L/DL-lactide)-CaCO3, (c) poly(D-lactide), (d) poly(D-lactide)-CaCO3, and (e) an untreated defect. No adjunctive internal or external fixation was used as the ulna was left intact. MAIN OUTCOME MEASURES: The limbs were studied with in vivo anterior-posterior and lateral radiographs at biweekly intervals for the presence and pattern of bone formation. All limbs were explanted at twelve weeks postimplantation for methyl-methacrylate embedding and histologic and microradiographic study. RESULTS: The bone defects covered with membranes were completely reconstituted by six to eight weeks. Untreated defects healed with less bone formation and in a more disorganized pattern. Histologic evaluation of the implants demonstrated that the entire lumen of the implant was filled with bone, with some periosteal bone formation occurring on the outer surface of the membrane. There was direct apposition of bone onto the membrane surface or minimal fibrous tissue interposition between membrane and new bone. There was no foreign body or adverse reaction to the membrane. Untreated defects showed woven bone formation with clefts and irregularly shaped margins occupied by fibrous tissues or surrounding muscle tissues. CONCLUSIONS: This study supports the concept that a membrane enhances bone defect healing by excluding nonosseous tissues from a defect and providing structural scaffolding for periosteal and endosteal bone regeneration.  相似文献   

16.
Small contained bone defects can be managed by cement either with or without screws. Larger contained defects should be managed using morsellized allograft bone. Uncontained bone defects can be managed with implant supplements or structural grafts depending on the size and location of the defect. In the salvage situation, custom implants and arthrodesis may need to be considered.  相似文献   

17.
This animal study compared the response of canine mandibular bone using the orthopedic principle of osteocompression by the function of an immediately loaded dental implant vs an unloaded dental implant of the same design and size. Two dogs were partially edentulated in the mandible. A total of 8 osteocompressive screw implants, 2 per quadrant were placed and evaluated histomorphometrically after 3 days in 1 dog and after 3 months in the second dog. The second dog had a two-unit fixed bridge placed immediately postsurgically in occlusal function on the right side; on the left side, the implants were splinted out of occlusion as a control. Histologically, no bone necrosis was observed at the implant interface by any of the 8 implants for either period as a direct result of the 4-mm-diameter by 13-mm-length implant design. Clinical parameters did not differ among the implants; however, at 3 months, the immediately loaded implants demonstrated more than twice the amount of bone density at their surfaces compared to the unloaded implants of the same design. Future human clinical research would be necessary to provide a meaningful statistical analysis to validate the importance of this implant design and the function of osteocompression.  相似文献   

18.
Full-thickness articular cartilage defects are a major clinical problem; however, presently there is no treatment available to regeneratively repair these lesions. The current therapeutic approach is to drill the base of the defect to expose the subchondral bone with its cells and growth factors. This usually results in a repair tissue of fibrocartilage that functions poorly in the loaded joint environment. The use of phenotypically appropriate chondrocytes embedded in a collagen gel delivery vehicle may provide a method that could be used to repair full-thickness articular cartilage defects with functionally satisfactory hyaline cartilage. Allograft articular chondrocytes embedded in a type I collagen gel were transplanted into large (6 x 3 x 3 mm), full-thickness articular cartilage defects in condylar and patellar weight-bearing surfaces to develop clinically applicable methods to repair articular cartilage defects. Chondrocytes were isolated from the articular cartilage of 4-week-old New Zealand rabbits and embedded in type I collagen gels. This composite was transplanted into a full-thickness defect on the medial femoral condyle and patellar groove of adolescent host rabbits. The repair cartilage was assessed histologically by a semiquantitative scoring system and biomechanically with a microindentation technique of specimens 4-48 weeks after chondrocyte transplantation. Defects in both locations were repaired with histologically apparent hyaline cartilage observed from as early as 4 weeks until 48 weeks after transplantation. The repair cartilage in the medial femoral condyle was more irregular than in the patellar groove, but in all other respects was similar. The grafted tissue did not remodel and differentiate into the morphological zones seen in normal articular cartilage. No tidemark or subchondral bony plate formed even 48 weeks after transplantation. Biomechanically, the repaired cartilage demonstrated indentation values similar to normal articular cartilage 12 weeks after transplantation and remained the same 48 weeks after transplantation. By contrast, the control (i.e., empty) defects healed with tissue that exhibited very poor metachromatic staining and exhibited very high indentation values. Incomplete bonding of the repair tissue to the normal cartilage was seen, and the surface was significantly irregular with major discontinuities. These observations provide the basis for considering the use of allograft articular chondrocytes to repair articular cartilage defects in the weight-bearing regions of the knee.  相似文献   

19.
There are many theories concerning the etiology of chondromalacia patellae, as well as many points which have not been fully investigated yet. Using rabbits experimentally, shortening and elongation of the 3 mm patellar ligament were performed, producing the changes of contact surface and pressure on the patellar cartilage, and the patellar cartilage and the subchondral bone were studied sequentially. In the group of shortening, after the course of 16 weeks, no particular changes were recognized in the cartilage and the subchondral bone, compared with the control. In the group with elongation, 2-4 weeks after the operation, thinning of the trabecular and the subchondral bone, proliferation of blood vessels in the subchondral bone and their invasion into the calcified cartilage, were seen, without abnormality in the articular cartilage. After 4 weeks, irregularity or disappearance of the tide mark and degeneration of the ground substance toward the deep layer of the cartilage began to be recognized. After 8 weeks fasciculation was produced in the ground substance from the deep to the middle layers of the cartilage. After 12 weeks, degeneration extended to the superficial layer of the cartilage, producing blister formation, fibrillation and fissura, and finally proceeding to the desquamation of the superficial layer, degeneration and decrease in the thickness of the cartilage. These findings are similar to the histological findings of chondromalacia patellae, and seem to be different from those of arthrosis deformans in the bony changes. It is further suggested that decrease of contact surface and pressure on the cartilage can be considered to be one of the causes for chondromalacia patellae.  相似文献   

20.
The efficacy of a bone-graft substitute (bovine-derived bone protein in a carrier of natural coral) in the healing of a segmental defect of a weight-bearing long bone was evaluated. Twenty dogs, divided into two groups, underwent bilateral radial osteotomies with creation of a 2.5 cm defect. On one side of each dog, the defect was filled with autogenous cancellous bone graft. Contralateral defects received, in a blinded randomized fashion, cylindrical implants consisting of natural coral (calcium carbonate) or calcium carbonate enhanced with a standard dose of bovine-derived bone protein (3.0 mg/implant; 0.68 mg bone protein/cm3). The limbs were stabilized with external fixators, and all animals underwent monthly radiographs. They were killed at 12 (group 1) or 24 (group 2) weeks, and regenerated bone was studied by biomechanical testing and histology. Radiographic union developed in all 20 radii with autogenous cancellous bone grafts and in all 10 of the radii with the composite implants. None of the radii with implants of calcium carbonate alone showed radiographic evidence of union. This represented a statistically significant difference between implant types. In addition, calcium carbonate implants both with and without bone protein demonstrated radiographic evidence of near total resorption of the radiodense carrier by 12 weeks. This resorption facilitated radiographic evaluation of healing. Mean values for biomechanical parameters of radii with the composite implants exceeded those for the contralateral controls at 12 and 24 weeks; the difference was statistically significant at 12 weeks. Histology revealed scant residual calcium carbonate carrier at either time in the defects with calcium carbonate implants; however, a moderate amount was present in defects with the composite implants. In these specimens, the residual carrier was completely surrounded by newly formed bone that may have insulated the calcium carbonate from further degradation. The present study used a carrier of granular calcium carbonate reconstituted with bovine type-I collagen to deliver an osteoinductive protein to the defect site. This carrier is of nonhuman origin (eliminating the risk of disease transmission or antigenicity) and resorbs rapidly. In this model, bovine-derived bone protein in a natural coral carrier performed consistently better than the gold standard autogenous cancellous bone graft in terms of the amount of bone formation and strength of the healed defect. This may have implications for removal of hardware or resumption of weight-bearing in certain clinical situations. These data also indicate that coralline calcium carbonate alone represents a poor option as a bone-graft substitute in this critical-sized segmental defect model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号