首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
壳聚糖是地球上蕴藏量最丰富的有机物之一.常用的壳聚糖相对分子质量大,不易溶于水等普通溶剂,使其应用受到极大限制.使用γ-射线(3x1015Bq钴-60装置)辐照壳聚糖,研究了溶液浓度、辐照剂量、辐照气氛、pH值和样品状态等因素在壳聚糖γ-射线辐照过程中对相对分子质量的影响.结果表明壳聚糖辐射降解产物的平均分子量随着溶液浓度增加和辐照剂量增大而降低,而与溶液的pH值无关.水对于壳聚糖辐射裂解有加速效应,溶液态壳聚糖辐照降解比固态辐照可以提高效率约50倍.  相似文献   

2.
利用放射性60Co产生的高能γ射线在窒温和空气气氛下降解等规聚丙烯(iPP),考察了不同辐照剂量的γ射线对iPP流动性能、熔融行为和非等温结晶动力学的影响.随着辐照剂量的增加,iPP的熔体流动速率显著增加.经γ射线辐照后,iPP的熔融温度和结晶度降低,同时用Avrami和Ozawa方程计算发现,γ射线辐照明显提高了iPP熔体的结晶速率,当辐照剂量为200 kGy时,半结晶时间减少到原来的37%,结晶活化能降低.X射线衍射谱图显示,γ射线辐照不影响iPP的结晶形式,未产生次级β结晶.  相似文献   

3.
在微波辐照下,采用NaNO2氧化降解壳聚糖,研究了反应时间、反应温度、 NaNO2用量等不同条件对壳聚糖解速率的影响情况。实验结果表明微波辅助能明显促进壳聚糖的降解,适当增加NaNO2用量和提高反应温度均能加快壳聚糖的氧化降解速率。  相似文献   

4.
壳聚糖是迄今为止发现的天然多糖中唯一的碱性多糖,将壳聚糖降解到需要的分子量是其应用的前提。本文综述了壳聚糖化学降解(酸降解和氧化降解)、物理降解(辐射降解、超声波和微波降解、机械研磨降解、高压均质降解)、酶降解(专一性酶降解、非专一性酶降解、复合酶降解)以及复合降解法的最新进展,供相关领域人员参考。  相似文献   

5.
酶法降解壳聚糖工艺研究   总被引:1,自引:0,他引:1  
采用非专一性酶(溶菌酶、纤维素酶)和专一性酶(壳聚糖酶)降解壳聚糖,探讨了不同条件对壳聚糖降解的影响.结果表明,溶菌酶降解壳聚糖的最佳条件为反应时间3.0 h、反应温度50℃、pH值4.0、酶用量40 U·mL-1;纤维素酶降解壳聚糖的最佳条件为反应时间1.5 h、反应温度55℃、pH值5.5、酶用量40 U·mL-1;壳聚糖酶降解壳聚糖的最佳条件为反应时间2.0 h、反应温度45℃、pH值5.0、酶用量30 U·mL-1.对壳聚糖酶酶解产物进行HPLC分析,发现得到了分子量分布较窄的壳寡糖.  相似文献   

6.
在微波辐照下,采用NaNO2氧化降解壳聚糖,研究了反应时间、反应温度、NaNO2用量等不同条件对壳聚糖解速率的影响情况。实验结果表明微波辅助能明显促进壳聚糖的降解,适当增加NaNO2用量和提高反应温度均能加快壳聚糖的氧化降解速率。  相似文献   

7.
壳聚糖降解研究进展   总被引:22,自引:0,他引:22  
壳聚糖已被广泛应用于化工、环保、医药等众多领域,将壳聚糖降解到需要的分子量是其应用的前提。本文介绍并评述了化学降解、物理降解和生物降解等壳聚糖降解方法的研究进展。  相似文献   

8.
壳聚糖降解技术   总被引:3,自引:0,他引:3  
壳聚糖是自然界中仅次于纤维素的第二大天然生物有机资源.由于其具有良好的生物特性而广泛应用于化工、食品、农业、环保、医药等众多领域.分子量对壳聚糖的性质影响很大,由壳聚糖降解制备的低聚壳聚糖,因具有许多独特的生理活性而日益受到研究者们的关注.本文综述了国内外关于壳聚糖降解方面的研究现状,分析了其未来的发展方向.  相似文献   

9.
用亚硝酸钠降解壳聚糖,研究了降解温度、降解时间对壳聚糖降解过程的影响.结果表明,在20 min内,壳聚糖分子量迅速减小,30 min后,壳聚糖分子量减小的趋势变缓;随着温度的升高,壳聚糖分子量减小的速度加快,但对脱乙酰度影响不大.壳聚糖的降解符合无规降解过程,其降解表观速率常数随温度升高而增大,降解活化能为63.3 kJ·mol-1.用亚硝酸钠降解壳聚糖是一种制备低分子量壳聚糖的快速且分子量可控的方法.  相似文献   

10.
壳聚糖氧化降解性能的研究   总被引:3,自引:0,他引:3  
冯文  郭腊梅 《化工时刊》2005,19(2):33-35
对壳聚糖在2%乙酸溶液中的氧化降解行为进行了探讨,着重考察了温度、时间和用量比R(H2O2与糖单元的物质量比)对相对分子质量的影响。同时对氧化降解的动力学规律作了初步研究,结果表明,氧化降解分为两个阶段,在后阶段的降解行为符合无规降解规律。  相似文献   

11.
脂肪酶降解壳聚糖的反应动力学研究   总被引:1,自引:0,他引:1  
马如  黄明智 《化学世界》2002,43(9):472-475
用还原糖法研究了脂肪酶降解壳聚糖过程中一系列反应条件包括温度、p H值、时间、酶浓度、底物浓度对降解速度的影响 ,比较合适的降解条件是 :最适宜温度 5 5°C,最适宜 p H值 5 .0 ,适当增大酶浓度和底物浓度能够加速壳聚糖的降解 ,而且脂肪酶降解壳聚糖的反应不遵循简单的一级反应动力学  相似文献   

12.
文中研究了壳聚糖γ辐射降解产物的水溶性规律。用凝胶渗透色谱(GPC)、傅立叶变换红外光谱(FT-IR)和X射线衍射(XRD)对降解产物进行表征分析。讨论了温度、辐射剂量、产物数均相对分子质量、产物化学结构以及结晶形态对溶解度的影响。结果表明,随着辐射剂量增加,数均相对分子质量的不断减小,产物在水中的溶解度不断增大。水溶性产物与不溶性产物在化学结构与结晶形态上存在明显差异。降解过程中壳聚糖结晶形态由初始的α态向β态转变,结晶度不断下降。一定条件下,结晶形态是决定产物水溶性的主要因素。  相似文献   

13.
对硅橡胶复合材料进行γ射线辐照处理,研究不同辐照吸收剂量对硅橡胶复合材料综合性能的影响。结果表明:随着辐照吸收剂量的增大,复合材料的拉伸强度呈现先减小后增大最后降低的趋势,在辐照吸收剂量为150 kGy时达到最大值;复合材料的硬度随辐照剂量的增大而增大。本文还通过傅里叶变换红外光谱(FT-IR)技术对辐照前后复合材料官能团的变化进行分析与鉴定。  相似文献   

14.
壳聚糖降解探索   总被引:7,自引:0,他引:7  
本文着重讨论了壳聚糖的主要降解方法及使用氧化降解法制备低聚壳聚糖的方法,采用正交设计,探讨降解条件对产物脱乙酰度、特性粘度等的影响。  相似文献   

15.
比较了NaNO2/HAc与H2O2/HAc两种体系降解壳聚糖工艺,探讨了反应时间、NaNO2及H2O2用量、醋酸质量分数、壳聚糖浓度等因素在不同体系下对降解速度及壳聚糖分子量的影响.结果表明,NaNO2/HAc体系最佳降解条件为:降解温度30℃、醋酸质量分数5%、壳聚糖浓度0.02 g·mL-1、NaNO2体积0.20 mL、降解时间45 min,降解所得到的低聚壳聚糖平均分子量约为1.7×104.H2O2/HAc体系最佳降解条件为:降解时间4 h、降解温度60℃、醋酸质量分数5%、壳聚糖浓度0.02 g·mL-1、30%H2O2体积0.50 mL,降解所得到的低聚壳聚糖平均分子量约为2.1×104.  相似文献   

16.
采用磷钨酸作催化剂,催化H_2O_2氧化降解天然大分子壳聚糖制备水溶性壳聚糖。通过单因素实验研究了降解温度、降解时间、催化剂用量(磷钨酸与壳聚糖的质量比)、H_2O_2用量(H_2O_2与糖单元物质的量比)对壳聚糖降解的影响,采用正交实验优化了最佳制备工艺条件。结果表明,水溶性壳聚糖最佳制备工艺条件为:降解温度70℃、降解时间4 h、催化剂用量0.02、H_2O_2用量2.0,在最佳工艺条件下,得到了产率58%左右、数均分子量1 500 Da左右的浅黄色水溶性壳聚糖。  相似文献   

17.
采用酶酸连续降解壳聚糖制备低分子量水溶性壳聚糖。首先确定了单因素降解壳聚糖的最佳技术参数:木瓜蛋白酶降解壳聚糖时最优条件为45℃、2h;醋酸降解壳聚糖时最优条件为30℃、4h;盐酸降解壳聚糖最优条件为90℃、8h;然后根据单因素降解壳聚糖最优条件确定了酶酸连续降解壳聚糖新工艺,并优化反应时间为7h。在相同条件下,酶酸连用方法最终降解产物的粘度低于单因素降解产物的粘度,产物表面性状有很大不同,分子量由降解前的33523.14下降到3134.11。  相似文献   

18.
壳聚糖的降解改性及其应用   总被引:1,自引:0,他引:1  
本文简要总结了国内外有关壳聚糖的降解改性方法以及它在生物医学上的研究成果。这些结果表明,壳聚糖是一类性能优异的生物材料,具有广阔的应用前景。  相似文献   

19.
将壳聚糖进行液态均相配合反应制得壳聚糖锰配合物,IR、元素分析及热分析等检测证实了壳聚糖锰配合物中配位键的存在,且显示壳聚糖锰配合物存在有利于壳聚糖高分子链断裂的弱势结构。以H2O2对壳聚糖.Mn(Ⅱ)配合物及壳聚糖进行氧化降解,考察降解过程中粘度的变化及降解产物分子量分布,在相同的降解条件下,壳聚糖锰配合物的降解速度明显高于壳聚糖,且降解产物分子量分布较壳聚糖直接降解窄。对壳聚糖锰配合物降解反应动力学研究表明壳聚糖锰配合物对H2O2分解不存在催化作用,其降解反应与壳聚糖的差异只与其结构有关。对降解产物进行脱金属处理,所得低聚壳聚糖含锰量为0。  相似文献   

20.
芬顿试剂能够有效地降解壳聚糖,反应介质的pH值、反应时间、反应温度、Fe~(2 )浓度及H_2O_2浓度等实验因素对芬顿试剂氧化降解壳聚糖的效果都有程度不同的影响,其中以反应介质的pH值和H_2O_2浓度对降解反应的影响为最大。在pH值为3~5时芬顿试剂降解壳聚糖的活性最高。适当增大H_2O_2的用量可以增大壳聚糖的降解程度,但当其用量增大至一定程度后,壳聚糖降解产物分子量的下降趋势明显变缓。合理的芬顿试剂降解壳聚糖的实验条件为:介质pH值为3~5;温度为室温;时间为60~90min;壳聚糖:H_2O_2:Fe~(2 )=240:12~24:1~2(摩尔比)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号