共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
利用放射性60Co产生的高能γ射线在窒温和空气气氛下降解等规聚丙烯(iPP),考察了不同辐照剂量的γ射线对iPP流动性能、熔融行为和非等温结晶动力学的影响.随着辐照剂量的增加,iPP的熔体流动速率显著增加.经γ射线辐照后,iPP的熔融温度和结晶度降低,同时用Avrami和Ozawa方程计算发现,γ射线辐照明显提高了iPP熔体的结晶速率,当辐照剂量为200 kGy时,半结晶时间减少到原来的37%,结晶活化能降低.X射线衍射谱图显示,γ射线辐照不影响iPP的结晶形式,未产生次级β结晶. 相似文献
3.
在微波辐照下,采用NaNO2氧化降解壳聚糖,研究了反应时间、反应温度、 NaNO2用量等不同条件对壳聚糖解速率的影响情况。实验结果表明微波辅助能明显促进壳聚糖的降解,适当增加NaNO2用量和提高反应温度均能加快壳聚糖的氧化降解速率。 相似文献
4.
壳聚糖是迄今为止发现的天然多糖中唯一的碱性多糖,将壳聚糖降解到需要的分子量是其应用的前提。本文综述了壳聚糖化学降解(酸降解和氧化降解)、物理降解(辐射降解、超声波和微波降解、机械研磨降解、高压均质降解)、酶降解(专一性酶降解、非专一性酶降解、复合酶降解)以及复合降解法的最新进展,供相关领域人员参考。 相似文献
5.
酶法降解壳聚糖工艺研究 总被引:1,自引:0,他引:1
采用非专一性酶(溶菌酶、纤维素酶)和专一性酶(壳聚糖酶)降解壳聚糖,探讨了不同条件对壳聚糖降解的影响.结果表明,溶菌酶降解壳聚糖的最佳条件为反应时间3.0 h、反应温度50℃、pH值4.0、酶用量40 U·mL-1;纤维素酶降解壳聚糖的最佳条件为反应时间1.5 h、反应温度55℃、pH值5.5、酶用量40 U·mL-1;壳聚糖酶降解壳聚糖的最佳条件为反应时间2.0 h、反应温度45℃、pH值5.0、酶用量30 U·mL-1.对壳聚糖酶酶解产物进行HPLC分析,发现得到了分子量分布较窄的壳寡糖. 相似文献
6.
在微波辐照下,采用NaNO2氧化降解壳聚糖,研究了反应时间、反应温度、NaNO2用量等不同条件对壳聚糖解速率的影响情况。实验结果表明微波辅助能明显促进壳聚糖的降解,适当增加NaNO2用量和提高反应温度均能加快壳聚糖的氧化降解速率。 相似文献
7.
8.
9.
10.
壳聚糖氧化降解性能的研究 总被引:3,自引:0,他引:3
对壳聚糖在2%乙酸溶液中的氧化降解行为进行了探讨,着重考察了温度、时间和用量比R(H2O2与糖单元的物质量比)对相对分子质量的影响。同时对氧化降解的动力学规律作了初步研究,结果表明,氧化降解分为两个阶段,在后阶段的降解行为符合无规降解规律。 相似文献
11.
脂肪酶降解壳聚糖的反应动力学研究 总被引:1,自引:0,他引:1
用还原糖法研究了脂肪酶降解壳聚糖过程中一系列反应条件包括温度、p H值、时间、酶浓度、底物浓度对降解速度的影响 ,比较合适的降解条件是 :最适宜温度 5 5°C,最适宜 p H值 5 .0 ,适当增大酶浓度和底物浓度能够加速壳聚糖的降解 ,而且脂肪酶降解壳聚糖的反应不遵循简单的一级反应动力学 相似文献
12.
文中研究了壳聚糖γ辐射降解产物的水溶性规律。用凝胶渗透色谱(GPC)、傅立叶变换红外光谱(FT-IR)和X射线衍射(XRD)对降解产物进行表征分析。讨论了温度、辐射剂量、产物数均相对分子质量、产物化学结构以及结晶形态对溶解度的影响。结果表明,随着辐射剂量增加,数均相对分子质量的不断减小,产物在水中的溶解度不断增大。水溶性产物与不溶性产物在化学结构与结晶形态上存在明显差异。降解过程中壳聚糖结晶形态由初始的α态向β态转变,结晶度不断下降。一定条件下,结晶形态是决定产物水溶性的主要因素。 相似文献
13.
14.
15.
比较了NaNO2/HAc与H2O2/HAc两种体系降解壳聚糖工艺,探讨了反应时间、NaNO2及H2O2用量、醋酸质量分数、壳聚糖浓度等因素在不同体系下对降解速度及壳聚糖分子量的影响.结果表明,NaNO2/HAc体系最佳降解条件为:降解温度30℃、醋酸质量分数5%、壳聚糖浓度0.02 g·mL-1、NaNO2体积0.20 mL、降解时间45 min,降解所得到的低聚壳聚糖平均分子量约为1.7×104.H2O2/HAc体系最佳降解条件为:降解时间4 h、降解温度60℃、醋酸质量分数5%、壳聚糖浓度0.02 g·mL-1、30%H2O2体积0.50 mL,降解所得到的低聚壳聚糖平均分子量约为2.1×104. 相似文献
16.
17.
采用酶酸连续降解壳聚糖制备低分子量水溶性壳聚糖。首先确定了单因素降解壳聚糖的最佳技术参数:木瓜蛋白酶降解壳聚糖时最优条件为45℃、2h;醋酸降解壳聚糖时最优条件为30℃、4h;盐酸降解壳聚糖最优条件为90℃、8h;然后根据单因素降解壳聚糖最优条件确定了酶酸连续降解壳聚糖新工艺,并优化反应时间为7h。在相同条件下,酶酸连用方法最终降解产物的粘度低于单因素降解产物的粘度,产物表面性状有很大不同,分子量由降解前的33523.14下降到3134.11。 相似文献
18.
壳聚糖的降解改性及其应用 总被引:1,自引:0,他引:1
本文简要总结了国内外有关壳聚糖的降解改性方法以及它在生物医学上的研究成果。这些结果表明,壳聚糖是一类性能优异的生物材料,具有广阔的应用前景。 相似文献
19.
将壳聚糖进行液态均相配合反应制得壳聚糖锰配合物,IR、元素分析及热分析等检测证实了壳聚糖锰配合物中配位键的存在,且显示壳聚糖锰配合物存在有利于壳聚糖高分子链断裂的弱势结构。以H2O2对壳聚糖.Mn(Ⅱ)配合物及壳聚糖进行氧化降解,考察降解过程中粘度的变化及降解产物分子量分布,在相同的降解条件下,壳聚糖锰配合物的降解速度明显高于壳聚糖,且降解产物分子量分布较壳聚糖直接降解窄。对壳聚糖锰配合物降解反应动力学研究表明壳聚糖锰配合物对H2O2分解不存在催化作用,其降解反应与壳聚糖的差异只与其结构有关。对降解产物进行脱金属处理,所得低聚壳聚糖含锰量为0。 相似文献
20.
芬顿试剂能够有效地降解壳聚糖,反应介质的pH值、反应时间、反应温度、Fe~(2 )浓度及H_2O_2浓度等实验因素对芬顿试剂氧化降解壳聚糖的效果都有程度不同的影响,其中以反应介质的pH值和H_2O_2浓度对降解反应的影响为最大。在pH值为3~5时芬顿试剂降解壳聚糖的活性最高。适当增大H_2O_2的用量可以增大壳聚糖的降解程度,但当其用量增大至一定程度后,壳聚糖降解产物分子量的下降趋势明显变缓。合理的芬顿试剂降解壳聚糖的实验条件为:介质pH值为3~5;温度为室温;时间为60~90min;壳聚糖:H_2O_2:Fe~(2 )=240:12~24:1~2(摩尔比)。 相似文献