首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用Gleeble-1500D热模拟机对AZ31B-0.8Nd稀土镁合金在应变速率为0.01~1s^-1,温度为300~450℃,最大变形量约为70%的条件下,进行了恒应变速率高温压缩模拟实验,研究了实验合金在高温变形时的流变应力与应变速率及变形温度之间的关系和组织变化。结果表明:合金的流变应力随应变速率的增大而增加.随应变温度的升高而减小;在应变速率和变形温度相同时,挤压态试样的流变应力明显低于铸态试样的流变应力。压缩变形量对应力应变关系的影响很小。探明了镁合金变形软化的主要机制是动态再结晶。根据实验分析,合金的热加工宜在400~450℃温度范围内进行,并且挤压态较铸态更易热挤压成型,更有助于晶粒细化。  相似文献   

2.
Mg-Gd-Y-Zr镁合金热压缩流变应力的研究   总被引:2,自引:0,他引:2  
采用恒应变速率高温压缩模拟实验,对Mg-Gd-Y-Zr镁合金在应变速率为0.001~1.0s^-1、变形温度为150~500℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了峰值流变应力方程。结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下,合金的流变应力随温度的升高而降低;在350-500℃,0.001~1.s^-1的变形条件下,变形激活能和应力指数分别为2215kJ/mol和368;流变应力方程计算出的峰值应力与真实值基本吻合。  相似文献   

3.
通过在Gleeble-1500动态热模拟机上进行高温等温压缩试验,研究了BFe30—1—1合金在高温塑性变形过程中的流变应力行为。试验温度为800-950℃,应变速率为0.1-20s^-1.研究结果表明:BFe30-1-1合金的流变应力随变形温度的增加而减小,随应变速率的增大而增大;应变速率越大,流变应力下降越明显;获得了采用Zener-Hollomon参数来描述的BFe30—1—1合金高温变形的流变应力方程,计算获得该合金变形激活能Q为177.62kJ/mol。  相似文献   

4.
3003铝合金热变形流变应力特征   总被引:4,自引:1,他引:4  
采用Gleeble-1500热模拟机进行圆柱体压缩实验.研究了3003铝合金在变形温度为300~500℃、应变速率为0.01~10s^-1、真应变为0~0.8条件下的流变应力特征。结果表明.流变应力随温度升高而降低,随应变速率的提高而增大;在应变速率小于10s^-1。时,3003铝合金首先出现加工硬化,流变应力达到峰值后单调下降,趋于平稳,表现出动态回复的特征;而在应变速率为10s^-1、变形温度在350℃以上时,合金发生了局部动态再结晶;可用Zener-Hollomon参数的双曲正弦形式来描述3003铝合金热压缩变形时的流变应力行为。  相似文献   

5.
7075铝合金高温流变行为的研究   总被引:19,自引:7,他引:19  
采用圆柱试样在Gleeble-1500热模拟机上进行高温压缩变形实验,研究了7075铝合金在高温塑性变形过程中流变应力的变化规律。实验在温度为250-500℃、应变速率为0.05-50s^-1的条件下进行。结果表明:应变速率和变形温度的变化强烈影响着合金流变应力的大小,流变应力随变形温度升高而降低,随就变速率提高而增大,可用ZenerHollomon参数的双曲正弦形式来描述7075铝合金高温压缩变形时的流变应力行为。  相似文献   

6.
采用Gleeble-1500热模拟机对圆柱试样进行恒温和恒速压缩变形实验,研究了01570铝合金在变形温度为360-480℃、应变速率为0.001~1s^-1条件下的流变变形行为。结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,达到峰值后趋于平稳,表现出动态回复的特征。可用包含Arrhenius项的Zener-Hollomon参数描述01570铝合金高温塑性变形时的流变行为。  相似文献   

7.
Mg-3Al-1Zn-0.8Nd合金热压缩变形流变应力的研究   总被引:2,自引:2,他引:2  
使用Gleeble-1500D热模拟实验机对含稀土Nd的镁合金Mg-3Al-1Zn-0.8Nd在变形温度为250-450℃,应变速率为0.01-1s-1条件下的流变应力进行研究。研究结果表明:该合金的流变应力强烈地受变形温度与应变速率的影响。合金的流变应力随变形温度的升高而下降,随应变速率的增加而增加且在变形温度为450℃,应变速率为0.01s^-1时呈稳态流变。该合金的流变应力与变形温度、应变速率的关系可以用幂指数关系描述。在本实验条件下,该合金的变形激活能为154.064kJ·mol^-1。  相似文献   

8.
7055铝合金高温流变应力特征及本构方程   总被引:2,自引:1,他引:1  
采用Gleeble-1500热模拟机进行高温等温压缩试验, 研究了7055合金在变形温度为300~450 ℃、应变速率为10-2~10 s-1条件下的流变应力特征.结果表明, 该合金为正应变速率敏感材料,流变应力随应变速率的增加而增大,随温度升高而减小.流变应力开始随应变增加而增大,达到峰值后趋于平稳, 表现出动态回复的特征.通过线性回归分析计算出该材料的应变硬化指数n为5.776 83以及变形激活能Q为146.400 7 kJ/mol, 获得了该合金高温条件下的流变应力本构方程.  相似文献   

9.
Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究   总被引:6,自引:4,他引:2  
采用Gleeble-1500热模拟机对Mg-Gd-Y-Mn稀土镁合金在温度为300~500℃、应变速率为0.001~1.0s-1、最大变形程度为60%的条件下,进行恒应变速率高温压缩模拟实验研究.分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化,计算了表观激活能及相应的应力指数,为选择这种合金的热变形加工条件提供了实验依据.结果表明:合金的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低;在给定的变形条件下,计算得出的表观激活能和应力指数分别为200kJ·mol-1和5.1.根据实验分析,合金的热加工宜在400~500℃温度范围内进行.  相似文献   

10.
热压缩7075铝合金流变应力特征   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟高温压缩变形试验,研究了7075铝合金高温塑性变形时的流变应力行为.结果表明,应变速率和变形温度的变化影响合金稳态流变应力的大小,在变形温度为350~500℃、应变速率为0.01~1 s^-1的条件下,随变形温度升高,流变应力降低;而随应变速率提高,流变应力增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius关系,可用Zener-Hollomon参数描述7075铝合金高温塑性变形时的流变应力行为.  相似文献   

11.
使用型号为Gleeble-3500的热压缩实验机进行热压缩实验,在实验中调控温度和应变速率,绘制流变应力曲线图并进行分析。对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度为360~480℃、应变速率为0.001~1 s^-1、并且热压缩试样的最大变形程度为60%条件下的形变软化现象进行了研究。经研究发现,Mg-13Gd-4Y-2Zn-0.5Zr合金的形变软化行为主要受其在不同变形条件下的动态再结晶行为的影响。设定材料常数α、n、A和Q与应变构建影响关系,将应变考虑在内后,建立了Mg-13Gd-4Y-2Zn-0.5Zr合金本构方程,其平均变形激活能为232.54 kJ·mol^-1。进行了误差检验,得到的峰值应力的实验值与计算值的平均相对误差的绝对值仅为5.5%,说明了建立的本构模型精度较高。  相似文献   

12.
采用差热分析、金相显微镜等手段,分析了Mg-11.21Gd-2.26Y-0.44Zr稀土镁合金的微观组织,结果发现,在温度530℃均匀化热处理4h,可使大部分合金元素固溶。采用Gleeble3800热模拟实验机,在温度为320℃~480℃、应变速率为0.001s-1~0.1s-1、最大变形程度为60%的条件下,对该镁合金进行热压缩实验,结果表现,材料流变应力行为和显微组织受到变形温度和变形速率的严重影响;合金的流动应力可以采用Sellars方程形式描述;计算出的变形激活能为225.67kJ.mol-1。  相似文献   

13.
采用Gleeble-3500热模拟机对时效态Mg-10Gd-3Y-0.5zr (GW103)和Mg-12Gd-3Y-0.5Zr(GW123)稀土镁合金在变形温度为25~350℃、应变速率为0.01 s~(-1)、最大变形程度为1的条件下进行压缩模拟试验,利用金相显微镜和扫描电镜观察组织变化.结果表明:GW103和GW123合金的室温抗压强度分别为419MPa和460MPa;150-200℃时GW123合金的抗压强度大干GW103合金;当温度高于250℃时,两种合金的抗压强度相近.分析表明250℃以下压缩时,孪生变形是影响压缩力学性能的主要因素;300~350℃压缩时,晶界和变形带处发生动态再结晶是影响压缩力学性能的主要因素.  相似文献   

14.
在变形温度为300~450 oC、应变速率为0.01~1 s-1的条件下进行热压缩试验,对Mg-5Y-0.5Ce-0.5Zr镁合金的热变形行为进行了研究。结果表明,在热压缩变形过程中,该合金的流变应力随着变形温度和应变速率的变化而变化。在同一应变速率下,流变应力随着变形温度的增高而降低;在同一变形温度下,流变应力随着应变速率的减小而减小。该合金热压缩流变应力的本构方程可采用双曲正弦形式构建,热变形激活能Q为253 kJ/mol。  相似文献   

15.
在热模拟试验机上进行了高温压缩试验,研究了GH4698高温合金在不同变形温度(950~1200℃)和应变速率(0. 01~10 s^-1)条件下的流变行为,建立了基于流变曲线的本构方程及以动态材料模型为基础的热加工图。借助扫描电镜和背散射电子衍射技术(EBSD)对变形后试样进行组织分析。结果表明:GH4698高温合金流变应力随着变形温度的降低和应变速率的加快而逐渐增加。在变形温度为1000~1200℃、应变速率为0. 01~0. 05 s^-1的热变形条件下,GH4698高温合金具有较佳的热加工行为。在高、低功率耗散率区域中,随着功率耗散率值的增加,动态再结晶百分数均会增加,再结晶平均晶粒尺寸增大,大角度晶界分数增加。  相似文献   

16.
Hot deformation behavior of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr magnesium alloy   总被引:1,自引:0,他引:1  
The behavior evolvement of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr(GWN751K) magnesium alloy during the hot deformation process was discussed.The flow stress behavior of the magnesium alloy over the strain rate range of 0.002 to 2.000 s-1 and in the temperature range of 623 to 773 K was studied on a Gleeble-1500D hot simulator under the maximum deformation degree of 60%.The experimental results showed that the relationship between stress and strain was obviously affected by strain rate and deformation temperature.The flow stress of GWN751K magnesium alloy during high temperature deformation could be represented by the Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation.The stress exponent n and deformation activation energy Q were evaluated by linear regression analysis.The stress exponent n was fitted to be 3.16.The hot deformation activation energy of the alloy during hot deformation was 230.03 kJ/mol.The microstructures of hot deformation were also influenced by strain rate and compression temperature strongly.It was found that the alloy could be extruded at 723 K with the mechanical properties of σ0.2 = 260 MPa,σb = 320 MPa,and δ = 18%.  相似文献   

17.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造 Mg-10Gd-3Y-0.5Zr 镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225℃和250℃时效下的最优T6热处理工艺分别为(525℃,12 h+225℃,14 h)和(525℃,12 h+250℃,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg-10Gd-3Y-0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

18.
研究T4和T6热处理状态下高真空压铸Mg-8Gd-3Y-0.4Zr(质量分数,%)合金的微观组织、化合物含量、力学性能及断裂行为。铸态Mg-8Gd-3Y-0.4Zr合金微观组织主要由α-Mg和共晶Mg24(Gd,Y)5化合物组成。经固溶处理后,共晶化合物大量溶解于镁基体,合金主要含过饱和α-Mg及方块相。固溶合金中方块相的含量随固溶温度的升高而增大,力学性能也有所提高。根据微观组织结果,确定475℃,2 h为Mg-8Gd-3Y-0.4Zr合金最优固溶方案。合金的最佳屈服强度为222.1 MPa,延伸率可达15.4%。铸态,T4状态下和T6状态下合金的拉伸断裂模式为穿晶准解理断裂。  相似文献   

19.
为研究锻态C-276镍基合金的热变形行为,采用Gleeble-3180D热模拟试验机对该合金在变形温度950~1200℃以及应变速率0.01~10 s-1条件下进行一系列热压缩实验。结果表明,合金的流变应力曲线都呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低。根据Arrhenius模型构建该合金峰值应力下的本构方程,得出合金的变形激活能为510.484 kJ/mol。依据材料动态模型绘制合金在0.6应变下的热加工图,并结合组织分析提出该合金最优的热加工参数为(1100℃,0.01 s-1)以及(1150℃,0.01~1 s-1)。另外,合金的组织变化规律表明,温度的增加或应变速率的降低能够促进合金的动态再结晶晶粒的形核与长大。  相似文献   

20.
在变形温度为623-773 K、应变速率为0.01~1.0 s-1、最大变形量为60%条件下,采用Gleeble-1500D热/力模拟机对Mg-6.5Y-2.5Nd-0.6Zr合金热压缩变形流变应力行为进行实验研究.结果表明:在应变速率为1.0 s-1等温压缩时,由变形热引起的温升最大达到25 K,修正后流变应力最大比测量值增加31.2 MPa;而应变速率为0.1 s-1压缩时,流变应力的修正值较测量值先减小后增大,其差值在7.8 MPa以内.根据修正的真应力-真应变曲线,结合包含双曲正弦形式的Arrhenius方程并引入Zener-Hollomon参数建立了流变应力本构方程,运用该方程计算的峰值应力与修正的实验数据吻合很好,其相对误差不超过5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号