首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involving many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaev’s toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for zcontrolled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.  相似文献   

2.
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.  相似文献   

3.
We propose a combined atom–molecule system for quantum information processing in individual traps, such as provided by optical lattices. In this platform, different species of atoms—one atom carrying a qubit and the other enabling the interaction—are used to store and process quantum information via intermediate molecular states. We show how gates, initialization, and readout operations could be implemented using this approach. In particular, we describe in some detail the implementation of a two-qubit phase gate in which a pair of atoms is transferred into the ground rovibrational state of a polar molecule with a large dipole moment, thus allowing atoms transferred into molecules to interact via their dipole-dipole interaction. We also discuss how the reverse process could be used as a non-destructive readout tool of molecular qubit states. Finally, we generalize these ideas to use a decoherence-free subspace for qubit encoding to minimize the decoherence due to magnetic field fluctuations. In this case, qubits will be encoded into field-insensitive states of two identical atoms, while a third atom of a different species will be used to realize a phase gate.  相似文献   

4.
We demonstrate the advantages of an optical parity gate using weak cross-Kerr nonlinearities (XKNLs), quantum bus (qubus) beams, and photon number resolving (PNR) measurement through our analysis, utilizing a master equation under the decoherence effect (occurred the dephasing and photon loss). To generate Bell states, parity gates based on quantum non-demolition measurement using XKNL are extensively employed in quantum information processing. When designing a parity gate via XKNL, the parity gate can be diversely constructed according to the measurement strategies. In practice, the interactions of XKNLs in optical fiber are inevitable under the decoherence effect. Thus, by our analysis of the decoherence effect, we show that the designed parity gate employing homodyne measurement would not be expected to provide reliable quantum operation. Furthermore, compared with a parity gate using a displacement operator and PNR measurement, we conclude there is experimental benefit from implementation of a parity gate via qubus beams and PNR measurement under the decoherence effect.  相似文献   

5.
Atom chips are a promising candidate for a scalable architecture for quantum information processing provided a universal set of gates can be implemented with high fidelity. The difficult part in achieving universality is the entangling two-qubit gate. We consider a Rydberg phase gate for two atoms trapped on a chip and employ optimal control theory to find the shortest gate that still yields a reasonable gate error. Our parameters correspond to a situation where the Rydberg blockade regime is not yet reached. We discuss the role of spontaneous emission and the effect of noise from the chip surface on the atoms in the Rydberg state.  相似文献   

6.
We propose a deterministic scheme to implement the multiqubit controlled-NOT gate of photons and multiqubit controlled-phase gate of electron spins with one control qubit and multiple target qubits using quantum dots in double-sided optical cavities. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive way. We assess the feasibility of the scheme and show that the gates can be implemented with high average fidelities by choosing the realistic system parameters appropriately. The scheme is useful in quantum information processing such as entanglement preparation, quantum error correction, and quantum algorithms.  相似文献   

7.
We review recent experimental progress towards quantum information processing and quantum simulation using neutral atoms in two-dimensional (2D) arrays of optical microtraps as 2D registers of qubits. We describe a scalable quantum information architecture based on micro-fabricated optical elements, simultaneously targeting the important issues of single-site addressability and scalability. This approach provides flexible and integrable configurations for quantum state storage, manipulation, and retrieval. We present recent experimental results on the initialization and coherent one-qubit rotation of up to 100 individually addressable qubits, the coherent transport of atomic quantum states in a scalable quantum shift register, and discuss the feasibility of two-qubit gates in 2D microtrap arrays.  相似文献   

8.
Light-matter systems allow to realize a strongly correlated phase where photons are present. In these systems strong correlations are achieved by optical nonlinearities, which appear due to the coupling of photons to atomic-like structures. This leads to intriguing effects, such as the quantum phase transition from the Mott to the superfluid phase. Here, we address the two-dimensional Jaynes–Cummings lattice model. We evaluate the boundary of the quantum phase transition and study polaritonic properties. In order to be able to characterize polaritons, we investigate the spectral properties of both photons as well as two-level excitations. Based on this information we introduce polariton quasiparticles as appropriate wavevector, band index, and filling dependent superpositions of photons and two-level excitations. Finally, we analyze the contributions of the individual constituents to the polariton quasiparticles.  相似文献   

9.
In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman–Murakami–Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley–Lieb projector and the Yang–Baxter gate. We describe quantum teleportation using the Temperley–Lieb projector and the Yang–Baxter gate, respectively, and study teleportation-based quantum computation using the Yang–Baxter gate. On the other hand, we exploit the extended Temperley–Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.  相似文献   

10.
We present a set of building blocks for constructing and utilizing compact, microchip-based, ultrahigh vacuum (UHV) chambers for the practical deployment of cold- and ultracold-atom systems. We present two examples of chip-compatible approaches for miniaturizing UHV chambers—double-magneto-optical-trap cells and channel cells—as well as compact, free-space optical systems into which these cells can be easily inserted and quickly swapped. We discuss progress in atom chip technology, including miniature through-chip electrical feedthroughs and optical windows for transferring light between the trapping region on the chip and the ambient environment. As an example of the latter, we present some of the first through-chip fluorescence images of a Bose–Einstein condensate. High numerical apertures can be achieved with this technique, allowing for submicron resolution. Whether for optical detection, trapping, or control, such fine resolution will have numerous applications in quantum information, especially for experiments based on ultracold atoms trapped in optical lattices.  相似文献   

11.
We investigate the quantum phase transition of an atomic ensemble trapped in a single-mode optical cavity via the geometric phase and quantum Fisher information of an extra probe atom which is injected into the optical cavity and interacts with the cavity field. We also find that the geometric quantum correlation between two probe atoms exhibits a double sudden transition phenomenon and show this double sudden transition phenomenon is closely associated with the quantum phase transition of the atomic ensemble. Furthermore, we propose a theoretical scheme to prolong the frozen time during which the geometric quantum correlation remains constant by applying time-dependent electromagnetic field.  相似文献   

12.
Circuit quantum electrodynamics system composed of many qubits and resonators may provide an excellent way to realize large-scale quantum information processing (QIP). Because of key role for large-scale QIP and quantum computation, multi-qubit gates have drawn intensive attention recently. Here, we present a one-step method to achieve a multi-target-qubit controlled phase gate in a multi-resonator system, which possesses a common control qubit and multiple different target qubits distributed in their respective resonators. Noteworthily, the implementation of this multi-qubit phase gate does not require classical pulses, and the gate operation time is independent of the number of qubits. Besides, the proposed scheme can in principle be adapted to a general type of qubits like natural atoms, quantum dots, and solid-state qubits (e.g., superconducting qubits and NV centers).  相似文献   

13.
The full analysis of quantum protocols requires the knowledge of the role of quantum states, bases of measurement and quantum gates involved. In what concerns the famous two-qubit quantum gate teleportation protocol, the role of the basis of measurement was considered in a recent work by Mendes and Ramos. In this work, we analyze the role of the four-qubit state used as resource. We show that the quantum two-qubit gate teleportation divides the set of pure four-qubit states in two classes. For one class, deterministic and probabilistic teleportation can be achieved, while for the other class, probabilistic remote two-qubit gate preparation is achieved.  相似文献   

14.
Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (C k NOT) neutral atom gate. This gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only 2k + 3 or 5 Rydberg π pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for k = 35.  相似文献   

15.
We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized in this system. For dynamical response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the parameter space with the interaction-induced topological transition characterizes the many-body dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold atom experiments with numerical simulations.  相似文献   

16.
This paper reviews the single photon sources based on semiconductor quantum dots and their applications to quantum information systems. By optically pumping a system consisting of a semiconductor single quantum dot confined in a monolithic microcavity, it is possible to produce a single photon pulse stream at the Fourier transform limit with a negligible jitter. This single photon source is not only useful for BB84 quantum key distribution (QKD), but also find applications in other quantum information systems such as Ekert91/BBM92 QKD and quantum teleportation gate linear optical quantum computers.  相似文献   

17.
We give a brief overview of cavity-QED and its roles in quantum information science. In particular, we discuss setups in optical cavity-QED, where either atoms serve as stationary qubits, or photons serve as flying qubits. PACS: 42.50.Pq, 03.67.Lx, 03.67.Hk, 32.80.Pj  相似文献   

18.
The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.  相似文献   

19.
We present a scheme to implement quantum computation in decoherence-free subspaces (DFSs) with four atoms in a single-mode cavity. A four-dimensional DFS is constituted to protect quantum information when the full symmetry of interaction between system and environment is broken in a specific way, and entangling two-qubit logic gates and noncommuting single-qubit gates are implemented in such DFS. The gate fidelity is numerically calculated, and the feasibility of the approximations taken in this work is verified based on the numerical calculations.  相似文献   

20.
Concatenated Greenberger–Horne–Zeilinger (C-GHZ) state is a kind of logic qubit which is robust in noisy environment. In this paper, we encode the C-GHZ state as the logic qubit and design two kinds of quantum gates for such logic qubit. The first kind is the single logic-qubit gate which contains the logic-qubit bit-flip gate and phase-flip gate. The second kind is the logic-qubit controlled-not (CNOT) gate. We exploit the single quantum gate for physical qubit, such as bit-flip gate and phase-flip gate, and two-qubit CNOT gate to realize the logic-qubit gate. We also calculated the success probability of such logic-qubit gate based on the imperfect physical quantum gate. This protocol may be useful for future quantum computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号