首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
The glass series with general formula 15 Li2O–(85 − x) B2O3x La2O3 was prepared. Electrical and optical properties of these glasses were studied. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of La2O3. Ion concentration of La3+ in glasses, polaron radius, field strength, molar refractivity and molar electronic polarizability were calculated. The absorption coefficient and direct optical band gaps are evaluated using the absorption edge calculations. The different factors that play a role for controlling the refractive indices such as electronic polarizability, field strength of cations and rigidity of glass structure are discussed in accordance with the obtained index data.  相似文献   

3.
The chemical diffusion coefficient of sulfur in the ternary slag of composition 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was measured at 1680 K, 1700 K, and 1723 K (1403 °C, 1427 °C, and 1450 °C) using the experimental method proposed earlier by the authors. The P\textS2 P_{{{\text{S}}_{2} }} and P\textO2 P_{{{\text{O}}_{2} }} pressures were calculated from the Gibbs energy of the equilibrium reaction between CaO in the slag and solid CaS. The density of the slag was obtained from earlier experiments. Initially, the order of magnitude for the diffusion coefficient was taken from the works of Saito and Kawai but later was modified so that the concentration curve for sulfur obtained from the program was in good fit with the experimental results. The diffusion coefficient of sulfur in 51.5 pct CaO-9.6 pct SiO2-38.9 pct Al2O3 slag was estimated to be in the range 3.98 to 4.14 × 10−6 cm2/s for the temperature range 1680 K to 1723 K (1403 °C to 1450 °C), which is in good agreement with the results available in literature  相似文献   

4.
The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature {χ] = f(CR, [Al2O3], T)}.  相似文献   

5.
An equilibrium experiment was carried out at 1873 K to investigate the effect of carbon in CaO-SiO2-Al2O3-MgO-MnO-Fe t O slag systems on their Fe t O and MnO activity coefficients, representing the slag’s thermodynamic potential for steel reoxidation. The activity coefficients of Fe t O and MnO showed not only a sharp increment but also a simultaneous slow decrement with increasing carbon content in slag, suggesting opposite roles of the carbon in slag according to its stable forms. X-ray photoelectron spectroscopy (XPS) was introduced to determine the stable forms of carbon in slag. The XPS results proved that carbon dissolves in slag as carbonate, and carbide ions under oxidizing and reducing atmospheres, respectively. The simultaneous consideration of the activity coefficients of Fe t O and MnO and stable carbon forms showed that carbonate ions increase the activity coefficients of Fe t O and MnO, but that carbide decreases them. This article suggests an application method of the present results to actual ladle refining processes, in order to enhance steel cleanliness with maintaining (Fe t O + MnO) in slag to some allowable amount.  相似文献   

6.
In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q0(Si) and Q2(Si) decreased, while those of the asymmetric units of Q1(Si) and Q3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.  相似文献   

7.
The viscosity of CaO-SiO2 (-MgO)-Al2O3 slags was measured to clarify the effects of Al2O3 and MgO on the structure and viscous flow of molten slags at high temperatures. Furthermore, the infrared spectra of the quenched slags were analyzed to understand the structural role of Al2O3 in the polymerization or depolymerization of silicate network. The Al2O3 behaves as an amphoteric oxide with the composition of slags; that is, the alumina behaves as a network former up to about 10 mass pct Al2O3, while it acts as a network modifier, in parts, in the composition greater than 10 mass pct Al2O3. This amphoteric role of Al2O3 in the viscous flow of molten slags at the Newtonian flow region was diminished by the coexistence of MgO. The effect of Al2O3 on the viscosity increase can be understood based on an increase in the degree of polymerization (DOP) by the incorporation of the [AlO4]-tetrahedra into the [SiO4]-tetrahedral units, and this was confirmed by the infrared (IR) spectra of the quenched slags. The influence of alumina on the viscosity decrease can be explained on the basis of a decrease in the DOP by the increase in the relative fraction of the [AlO6]-octahedral units. The relative intensity of the IR bands for the [SiO4]-tetrahedra with low NBO/Si decreased, while that of the IR bands for [SiO4]-tetrahedra with high NBO/Si increased with increasing Al2O3 content greater than the critical point, i.e., about 10 mass pct in the present systems. The variations of the activity coefficient of slag components with composition indirectly supported those of viscosity and structure of the aluminosilicate melts.  相似文献   

8.
9.
A thermodynamic equilibrium between the Fe-16Cr melts and the CaO-Al2O3-MgO slags at 1823 K as well as the morphology of inclusions was investigated to understand the formation behavior of the MgO-Al2O3 spinel-type inclusions in ferritic stainless steel. The calculated and observed activities of magnesium in Fe-16Cr melts are qualitatively in good agreement with each other, while those of aluminum in steel melts exhibit some discrepancies with scatters. In the composition of molten steel investigated in this study, the log (X MgO/X Al 2O3) of the inclusions linearly increases by increasing the log [a Mg/a Al 2 ·a O 2 ] with the slope close to unity. In addition, the relationship between the log (X MgO/X Al 2O3) of the inclusions and the log (a MgO/a Al 2O3) of the slags exhibits the linear correlation with the slope close to unity. The compositions of the inclusions are relatively close to those of the slags, viz. the MgO-rich magnesia-spinel solid solutions were formed in the steel melts equilibrated with the highly basic slags saturated by CaO or MgO. The spinel inclusions nearly saturated by MgO were observed in the steel melts equilibrated with the slags doubly saturated by MgO and MgAl2O4. The spinel and the Al2O3-rich alumina-spinel solid solutions were formed in the steel melts equilibrated with the slags saturated by MgAl2O4 and MgAl2O4-CaAl2O4 phases, respectively. The apparent modification reaction of MgO to the magnesium aluminate inclusions in steel melts equilibrated with the highly basic slags would be constituted by the following reaction steps: (1) diffusion of aluminum from bulk to the metal/MgO interface, (2) oxidation of the aluminum to the Al3+ ions at the metal/intermediate layer interface, (3) diffusion of Al3+ ions and electrons through the intermediate layer, and (4) magnesium aluminate (MgAl2O4 spinel, for example) formation by the ionic reaction.  相似文献   

10.
The stability diagram of MgO, spinel solid solution (MgO·(Al X Cr1−X )2O3), and sesquioxide solid solution ((Al Y Cr1−Y )2O3) as a function of Mg, Al, and O contents at a constant chromium content (18 mass pct) in liquid iron is drawn at 1873 K. The interaction parameters between Mg and other solutes (Al, Cr, Ni, Ti, Si, and C) are determined by the experimental method, which assures equilibrium between Mg vapor and liquid iron, were applied to calculate the diagram. Titanium deoxidation is not recommended for the prevention of spinel formation, because Ti accelerates Mg dissolution from refractory or slag due to its high affinity for Mg (e Mg Ti = − 0.64). The standard Gibbs free energies of formation for the three inclusions (periclase, spinel, and sesquioxide solid solutions) and the tielines between two solid solutions were calculated with the aid of the regular solution model and the thermochemical F*A*C*T database computing system, respectively. The phase stability regions and oxygen content in steel for the current Fe-Mg-Al-Cr (18 mass pct)-O system are compared with those of the previous non-Cr system. Detailed information on the spinel composition according to Mg and Al contents is also available from the present stability diagram.  相似文献   

11.
Refractive indexes for the Al2O3-Na2O-SiO2 system have been measured using an ellipsometer for a wavelength of 632.8 nm over a wide temperature range (1100 to 1800 K). Two kinds of sample were used: xAl2O3-(40-x)Na2O-60SiO2 and yAl2O3-yNa2O-(100-2y)SiO2, where x ranged between 6 and 20 mol pct and y between 12.5 and 25 mol pct. In the former samples, the temperature coefficient of refractive indexes changed from negative to positive on increasing the concentration of Al2O3. In the latter samples, the refractive indexes increased monotonically with decreasing concentration of SiO2, and the temperature coefficient was always positive. It has been found that the temperature dependence of refractive indexes in these melts is determined by the coefficient of thermal expansion, which would be relevant to the degree of polymerization of the melts. In addition, the electronic polarizability of oxygen derived from the refractive indexes increased with increasing temperature in each melt. This suggests that the basicity of the alumino-silicate melts increases as temperature increases. The positive temperature coefficient of the electronic polarizability of oxygen can be attributed to an increase in the distance between cation and oxygen ion due to thermal expansion. The dependence of the electronic polarizability of oxygen on the concentration of Al2O3 has also been discussed in terms of the electronic polarizabilities of three types of oxygen contained in the melts. This article is based on a presentation given in the Mills Symposium entitled “Metals, Slags, Glasses: High Temperature Properties & Phenomena,” which took place at The Institute of Materials in London, England, on August 22–23, 2002.  相似文献   

12.
13.
The liquid MnO-SiO2-Al2O3 system was studied at 1823 K by equilibrating MnO-SiO2-Al2O3 melts of different compositions with Pt-Mn alloys and an oxygen-bearing gas phase. Liquid compositions for cristobalite saturation were determined at 1823 K. A new liquidus for the cristobalite primary field is proposed. The activity of Mn in the Pt-Mn alloy at 1823 K can be represented by the following equation:
The MnO activity was measured in different melt compositions, and MnO isoactivity lines were determined. It was found that the MnO activity is relatively insensitive to the SiO2/Al2O3 ratio, but increases sharply above the MnO mole fraction of 0.5. In the low-MnO-concentration range (α MnO <0.15), the quadratic formalism expressed by the following equation is proposed to represent the MnO activity:
If the MnO activity exceeds the aforementioned limit, the modified quasi-chemical model is recommended.  相似文献   

14.
Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete \textSiO44 - {\text{SiO}}_{4}^{4 - } tetrahedral units in the silicate melt would exist along with O2– ions. The change in melt expansivity may be attributed to the ionic expansions in the order of
\textAl 3+ - \textO 2- < \textCa 2+ - \textO 2- < \textCa 2+ - \textO - {\text{Al}}^{ 3+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ 2- } < {\text{Ca}}^{ 2+ } - {\text{O}}^{ - }  相似文献   

15.
16.
To derive a correlation between sulfide and chloride capacities through our own systematic experimental studies by using a gas equilibrium technique involving Ar-H2-H2O-HCl gas mixtures, the solubilities of chlorine were determined for CaO-SiO2-MgO-Al2O3 slags at temperatures between 1673 K and 1823 K (1400 °C and 1550 °C). As a formula to correlate sulfide and chloride capacities, the following equation that is the function of temperature only was obtainable;
2logC\textCl - logC\textS = - 64.4 + \frac82,890T(\textK) ±0.75 2\log C_{\text{Cl}} - \log C_{\text{S}} = - 64.4 + {\frac{82,890}{{T({\text{K}})}}} \pm 0.75  相似文献   

17.
The metastable L12-Al3Zr phase has been obtained as a solidification product on melt-spinning ternary Al-X-Zr (X = Cu, Ni) alloys. Different non-equilibrium effects of the metastable Al3Zr phase (L12) have been observed in the as-solidified and heat-treated alloys. The solidification sequence begins with the formation of the L12-Al3Zr (cubic) phase as a primary phase, followed by heterogeneous nucleation of α-Al. Morphological changes in the primary phase result in a shape transformation from a faceted cube to one with concave interfaces and protrusions along the corners, having a preferential growth along the 〈111〉 direction. This is brought about by a kinetic effect taking place during the growth of the L12-Al3Zr phase into the surrounding liquid, as the alloy is quenched. In another instance, the primary L12-Al3Zr phase nucleates as solid-state precipitates of the same L12-Al3Zr phase on annealing, by dissolution and reprecipitation of solute, under the influence of moving grain boundaries. A third case shows the metastable L12 phase nucleating on the equilibrium DO23-Al3Zr phase, upon solidification. This is attributed to the sluggish growth kinetics of the latter.  相似文献   

18.
The crystallization behavior and microstructure of silica-free 5K2O-45CaO-50P2O5 (KCP) bioglass have been studied using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning election microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The activation energy for the KCP bioglass crystallization is found to be 337.4 kJ/mol using a nonisothermal method. The crystalline phases of the glass surface determined by XRD are KCa(PO3)3, 4CaO·3P2O5, and β-Ca(PO3)2 when the KCP bioglass is crystallized at 903 K for 4 hours. The crystalline phase of the powder samples determined by XRD is β-Ca(PO3)2 when silica-free KCP glasses crystallized at 873 to 1073 K for 8 hours. Crystallization starts at the surface of the KCP bioglass and then proceeds toward the interior of the glass matrix. The morphology of β-Ca(PO3)2 is a fibrillar shape 20 to 180 nm in length and 17 to 20 nm in diameter, with an aspect ratio ranging from 1.0 to 10.6.  相似文献   

19.
MnO-SiO2-Al2O3-MnS oxysulfide system has been investigated by experimental phase diagram and activity measurement coupled with thermodynamic modeling.Phase equilibria of the MnO-MnS,MnO-SiO2-MnS, MnO-Al2O3-MnS and MnO-SiO2-Al2O3-MnS systems under low oxygen partial pressure have been experimentally investigated for the temperature range of 1 185 to 1 500℃using equilibration and quenching techniques. Equilibrium phases were analyzed by scanning electron microscope,electron probe X-ray microanalysis(EPMA), and differential thermal analysis(DTA ).Phase diagrams were successfully constructed for the systems investigated.Two ternary compounds in the MnO-SiO2-MnS system were found.Activities of MnO and MnS in MnO-SiO2-Al2O3-MnS liquid oxysulfide solution from very low sulfur concentration to high sulfur concentration at solid MnS saturation were investigated employing gas/liquid/Pt - Mn alloy under controlled atmosphere at 1 500℃.As X(SiO2)/(X(MnO) + X(SiO2)) increases in liquid oxysulfide solution,activity coefficient of MnO decreases while that of MnS increases.As X(AlO1.5) increases,the activity coefficient of MnS increases while no remarkable change was observed for the activity coefficient of MnO.Quantitative analysis of the thermodynamic properties of the oxysulfide solution as well as phase diagram of the system was also earned out by employing the Modified Quasichemical Model in the quadruplet approximation.In view of inclusion utilization for free - cutting steel,it might have an advantage to decrease the Al2O3 content and increase the MnO/SiO2 ratio.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号