首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

2.
Plasma surface nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 350 °C, 420 °C and 500 °C for 10 h using a DC plasma nitriding unit, and the surface properties of the plasma surface engineered samples were systematically evaluated. Experimental results have shown that the surface properties of the plasma nitrided layers in terms of hardness, wear resistance, corrosion behaviour and corrosion-wear resistance are highly process condition dependent, and it is feasible to provide considerable improvement in wear, corrosion and corrosion-wear resistance of 17-4PH steel using optimised plasma treatment conditions. All three treatments can effectively improve the surface hardness and the sliding wear resistance under unlubricated conditions; high temperature (420 °C and 500 °C) treated materials revealed improved corrosion and corrosion-wear properties due to the formation of surface compound layers.  相似文献   

3.
17-4PH martensitic precipitation hardening stainless steel was plasma nitrocarburized at 430 °C and 460 °C for 8 h. The nitrocarburized layers were characterized by optical microscope, scanning electron microscope, X-ray diffractometer, microhardness tests, pin-on-disc tribometer and the anodic polarization method in a 3.5% NaCl solution. The results show that the microstructure of plasma nitrocarburized layer is characterized by a compound layer with no evident diffusion zone. The phases in the 430 °C treated layer are mainly of γ′-Fe4N, nitrogen and carbon expanded martensite (α′N), and some incipient CrN phases. When the temperature increases up to 460 °C, there is no evidence of α′N phase. The processes of bulk precipitation hardening and surface treatment by plasma nitrocarburizing can be successfully combined in a single-step process on this steel. The hardness of modified layer can reach up to 1186HV, which is 3 times higher than that of untreated steel. The wear and corrosion resistance of the specimens can be apparently improved by plasma nitrocarburizing. The 460 °C/8 h treated specimen has the best wear and corrosion resistance in the present test conditions.  相似文献   

4.
Systematic microstructure characterisation of plasma nitrided (350-500 °C for 10 to 30 h) 17-4PH alloy was carried out using SEM, XRD and TEM. Experimental results have shown that the microstructure and phase constituents of the plasma surface alloyed cases are highly treatment temperature dependent. When treated at low-temperatures (≤ 420 °C), the microstructure is dominated by nitrogen supersaturated martensite (α'N-expanded martensite); Nitrogen S-phase grains can be formed from the pre-existent retained austenite by converting the retained austenite grains in 17-4PH but no continuous S-phase layer was found. When treated at high-temperatures (above 420 °C), a surface γ′-Fe4N compound layer was formed, CrN precipitated and S-phase was decomposed.  相似文献   

5.
The aim of this work was to study if hydrogen environment embrittlement of DIN 1.4301 austenitic stainless steel can be suppressed by a nitrided surface. DIN 1.4301 was plasma nitrided in a N2/H2 discharge. Nitriding produced 3-layered structure consisting of a γN top layer, an intermediate γ/γC-layer and a diffusion layer. It is assumed that the γC phase was formed due to the decomposition of CO originating from the reactor walls and the subsequent incorporation of C into the material. The γC phase is characterized by distinct XRD peaks and carbon contents between 0.5 and 4 wt.% as well as nitrogen contents between 0.5 and 8 wt.%. Plastic deformation of the plasma nitrided specimen showed cracks and some delamination of the γN layer, whereas the γ/γC-layer behaved in a very ductile manner. Even at a plastic deformation of 35% no cracks or any other damage was visible. A tensile test in gaseous hydrogen showed severe embrittlement of the unnitrided steel and the nitrided steel with a γN layer. No cracks were observed in areas where just the γ/γC-layer was present.  相似文献   

6.
AISI 304 austenitic stainless steel samples were plasma nitrided at 420 °C for 6 h in vacuum atmosphere by glow discharge technique, in the presence of nitrogen gas. Plain fatigue and fretting fatigue tests were carried out on unnitrided and plasma nitrided samples. Plasma nitrided samples exhibited higher surface hardness, compressive residual stresses at the surface and lower surface roughness compared with unnitrided samples. However, plasma nitrided samples exhibited inferior plain fatigue and fretting fatigue lives compared with unnitrided samples. This was attributed to segregation of chromium at the grain boundaries of plasma nitrided specimens which might have weakened the regions near grain boundaries resulting in early crack initiation and accelerated crack propagation.  相似文献   

7.
刘振宝  梁剑雄  杨志勇 《连铸》2015,34(3):44-48
马氏体沉淀硬化不锈钢以其具有高强、高韧和不锈性等良好的综合性能成为了航空、航天、海洋等高科技领域不可缺少的原材料。为了得到优异的性能,在这类钢的合金设计时钼是首先考虑添加的强化元素之一,叙述了Mo在马氏体沉淀硬化不锈钢中的作用与具体的应用实例,为这类钢的强化设计提供参考和技术信息。  相似文献   

8.
Intensified plasma-assisted nitriding of AISI 316L stainless steel   总被引:3,自引:0,他引:3  
In the present study, processing of AISI 316L stainless steel (316ss) has been conducted by intensified plasma-assisted processing (IPAP). The processing parameters (bias voltage, current density, chamber pressure and substrate temperature) of IPAP have been varied in an effort to determine which conditions lead to the formation of a single-phase structure, ‘m’ phase, and evaluate the properties of this phase. The structural characteristics of the nitrided layers produced by IPAP have been investigated by X-ray diffraction analysis. Nanoindentation experiments have been performed over cross-section to determine hardness and elastic modulus profiles. Dry sliding wear and potentiodynamic aqueous corrosion experiments have been conducted to characterize 316ss nitrided by IPAP. IPAP has been successful in producing single-phase m with high hardness and in shorter processing time compared to diode plasma nitriding. The IPAP produced single-phase nitrided layer was found to possess higher hardness (fourfold increase over the unprocessed alloy), excellent wear and corrosion resistance.  相似文献   

9.
Martensitic stainless steels are widely used for their good mechanical properties and moderate corrosion resistance. However, the need for superior properties in specific applications (e.g. steam generators, mixer blades, etc.) led to wide researches on the performance improvement of these steels. Heat treatment was recommended as one of the best ways to this regard hence the effects of astenitizing temperature and time, and tempering temperature on the microstructure, mechanical and corrosion properties of AISI420 have been studied. In the current work the experimental results showed that the austeitizing temperature significantly affects mechanical properties. The increase of tempering temperature led to precipitation of M7C3 and secondary hardening in the range of 400-500 °C. SEM micrographs of the fracture surfaces showed a mixed fracture mechanism (brittle and ductile) at 200 °C and 700 °C and brittle mechanism at 500 °C. The Polarization curves were not significantly affected by the increment of austenitizing temperature.  相似文献   

10.
离子渗氮AISI 420马氏体不锈钢耐蚀行为研究   总被引:4,自引:1,他引:3  
采用不同温度对AISI 420马氏体不锈钢进行离子渗氮处理.借助光学显微镜和X射线衍射(XRD)技术分析了渗氮层的微观组织结构,利用显微硬度计测试了渗氮层的硬度分布,通过电化学极化曲线测试和盐雾腐蚀试验研究了离子渗氮AISI 420不锈钢在模拟工业环境中的腐蚀行为.结果表明:AISI 420不锈钢350℃低温离子渗氮层由ε-Fe3N和N过饱和固溶体αN相组成,其化学稳定性高,加之固溶Cr元素的联合作用,明显提高了AISI 420不锈钢基材的腐蚀抗力.AISI 420钢经450℃和550℃渗氮处理,渗氮层中的αN分解成了α相和CrN,造成基体贫Cr,降低了基材的耐蚀性能.马氏体不锈钢低温离子渗氮处理不仅可以提高表面硬度,而且可以获得良好的耐蚀性能.  相似文献   

11.
The feasibility of generating S-phase surface layers in nickel-free austenitic stainless steels by plasma surface alloying with nitrogen (at 430 °C), carbon (at 430 °C and 500 °C) and both carbon and nitrogen (at 430 °C) has been investigated. The structure, microstructure and composition of the plasma-alloyed surfaces were characterised by X-ray Diffraction (XRD), microscopy, Glow Discharge Optical Emission Spectroscopy (GDOES) and Transmission Electron Microscopy (TEM). The experimental results have demonstrated for the first time that the S-phase can be produced in the surface of nickel-free austenitic stainless steel by low-temperature plasma surface alloying. TEM analysis has revealed that when alloyed with carbon no precipitates can be found within the carbon-rich S-phase layer; however, when alloyed with nitrogen or both carbon and nitrogen some nitride precipitates (Mn3N2 and Cr2N) were found within the nitrogen-rich S-phase layer. Based on experimental results, the response of Ni-free austenitic stainless steel to plasma surface alloying has been compared to the Ni-containing counterpart, and the role of nickel in the formation of S-phase in austenitic stainless steels has been discussed.  相似文献   

12.
ABSTRACT

Martensitic stainless steel (MSS) resistance spot welds are prone to quasi-cleavage interfacial failure with very low energy absorption capability due to formation of hard and brittle carbon and chromium rich martensite in the fusion zone (FZ). In this work, a new pathway is proposed to enhance strength/toughness of the MSS resistance spot welds based on modification of the FZ composition/microstructure via introducing a nickel interlayer. This altered the FZ microstructure from dual phase microstructure of martensite and δ-ferrite to austenitic microstructure with finely dispersed ultra-fine chromium rich carbides. Formation of a tough predominately austenitic microstructure in the FZ enabled achieving a pullout failure with an unprecedented level of energy absorption.  相似文献   

13.
C.X. Li  T. Bell 《Corrosion Science》2006,48(8):2036-2049
Samples of an AISI 410 martensitic stainless steel were plasma nitrided at a temperature of 420 °C, 460 °C or 500 °C for 20 h. The composition, microstructure and hardness of the nitrided samples were characterised using a variety of analytical techniques. In particular, the corrosion properties of the untreated and plasma nitrided samples were evaluated using anodic polarisation tests in 3.5% NaCl solution and immersion tests in 1% HCl acidic water solution. The results showed that plasma nitriding produced a relatively thick nitrided case consisting of a compound layer and a nitrogen diffusion layer on the 410 stainless steel surface. Plasma nitriding not only increased the surface hardness but also improved the corrosion resistance of the martensitic stainless steel. In the immersion test, nitrided samples showed lower weight loss and lower corrosion rate than untreated one. In the electrochemical corrosion tests, the nitrided samples showed higher corrosion potentials, higher pitting potentials and greatly reduced current densities. The improved corrosion resistance was believed to be related to the iron nitride compound layer formed on the martensitic stainless steel surface during plasma nitriding, which protected the underlying metal from corrosive attack under the testing conditions.  相似文献   

14.
Plasma nitriding of an AISI 316L austenitic stainless steel at low (400 °C) and high temperatures (550 °C) was performed under different nitriding gas mixtures. Nitrided surfaces were characterized by XRD using the Rietveld method. Expanded austenite “γN” with a special triclinic (t) crystalline structure was formed during the low-temperature nitriding treatment. Minor volume fractions of Fe3N, Fe4N and Cr2N nitrides were also found. The expanded austenite phase showed a distortion ε of the lattice angles due to a very high nitrogen content dissolved in austenite, supersaturating the solid solution and leading to a 10% lattice distortion and to high compressive residual stresses at the surface.After nitriding the specimens at 550 °C the case was composed primarily by a high volume fraction of Fe4N, Cr2N and CrN nitrides, leading to a low distortion of the parent austenitic phase, maintaining the original cubic lattice.  相似文献   

15.
This study aimed to evaluate the effect of surface remelting by a plasma torch on fatigue resistance of a soft martensitic stainless steel used in the manufacture of hydraulic turbine rotors. The remelting was performed on the surface of this type of steel using direct and pulsed current with the fatigue tests performed by bending at four points at 750, 850 and 1000 MPa stresses. It was found better performance of the remelted condition in relation to cast material without this treatment and no significant differences in fatigue performance between the two remelted processes. The presence of compressive residual stresses resulting from the martensitic transformation partly explains the better performance of the remelted condition. Microscopic analysis further revealed that the lower the fatigue performance of the base material was also associated with the presence of defects (microshrinkage) from the casting process, which promoted the nucleation of fatigue cracks next to them. The presence of delta ferrite together with martensite laths oriented at 45° to the loading direction promoted fatigue crack nucleation in specimens with surface remelted treatment.  相似文献   

16.
AISI 304 austenitic stainless steel was plasma nitrided at the temperature ranging from 410 to 520 °C with pre-shot peening. The structural phases, micro-hardness and electrochemical behavior of the nitrided layer were investigated by optical microscopy, X-ray diffraction, micro-hardness testing and anodic polarization testing. The effects of shot peening on the nitride formation, nitride layer growth and corrosion properties were discussed. The results showed that shot peening enhanced the nitrogen diffusion rate and led to a twice thicker nitrided layer than the un-shot peening samples under the same plasma nitriding conditions (410 °C, 4 h). The nitrided layer was composed of single nitrogen expanded austenite (S-phase) when nitriding below 480 °C, which had combined improvement in hardness and corrosion resistance.  相似文献   

17.
Results of the investigation of nitrided layers on 17-4 PH type precipitation hardening stainless steel are presented in this paper. The layers have been produced in the process of gas nitriding in a partly dissociated ammonia at temperatures between 410 and 570 °C. Hydrogen chloride admixture to active atmosphere was used as a surface activator. Structure of the nitrided layers were examined using scanning and transmission electron microscopy, X-ray microanalysis (EDX and WDX), and X-ray diffraction. The influence of the initial steel heat treatment on the nitriding kinetics has been considered. 17-4 PH stainless steel was nitrided at various heat treatment conditions, i.e. after solution treatment or ageing at different temperatures. The influence of precipitation processes taking place during the heat treatment before nitriding on the diffusive process kinetics was proven. It was found that, that increasing of steel ageing temperature up to 600 °C before nitriding effects on an increasing of the nitriding kinetics.  相似文献   

18.
马氏体不锈钢不同渗氮方法对比试验   总被引:1,自引:0,他引:1       下载免费PDF全文
方梦莎  张津  连勇 《金属热处理》2021,46(10):221-225
采用离子渗氮、液体渗氮及气体渗氮对耐蚀耐热马氏体型热稳定不锈钢1Cr12Ni2WMoVNb进行表面改性,研究了不同渗氮方法下不锈钢的硬度、组织形貌、物相变化及脆性,并对3种渗氮方法下不锈钢的耐蚀性及耐高温磨损性能进行了比较。结果表明:3种渗氮方法均可大幅度提高不锈钢的表面硬度,且不同渗氮处理后不锈钢的渗层组织结构大致相同,但表面物相有所差异,离子渗氮后的表面物相主要为Fe4N及少量CrN相,液体渗氮后为Fe3O4及ε相,气体渗氮后为Fe3O4、Fe4N及少量ε相;3种渗氮方法均可提高不锈钢的耐磨损性能,特别是在500~600 ℃下的高温耐磨性得到了大幅提升,但不锈钢渗氮后的耐蚀性均有所降低。  相似文献   

19.
In the present study, plasma nitriding of AISI type 303 austenitic stainless steel (SS) specimens was performed using a microwave system. The nitrided layers were characterized by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Vickers microhardness test. The antibacterial activities of the nitrided layers were evaluated. XRD and TEM showed that a single γN phase was formed by plasma nitriding at the plasma power of 700 W and 450 °C. The analytical results demonstrated that the hardness of type 303 specimens could be enhanced by plasma nitriding because of the formation of the γN phase. A bacterial test also demonstrated that the nitrided layer exhibited excellent antibacterial properties.  相似文献   

20.
离子溅射在奥氏体不锈钢离子渗氮中的应用   总被引:1,自引:1,他引:0  
利用自制的直流脉冲离子渗氮设备采用加强离子溅射预处理方法对奥氏体不锈钢进行了离子渗氮,并与普通的离子渗氮方法进行对比.结果表明,通过加强溅射的方法得到的试样表面硬度在1 200 HV0.5以上,耐磨性能提高了4~5倍,硬度梯度变得更为平缓.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号