共查询到20条相似文献,搜索用时 0 毫秒
1.
Guozhi Xie Yijun Lu Bing Hu Xiangyin Mo Pinghua Lin 《Surface & coatings technology》2008,202(13):2885-2890
The effects of laser and plasma arc remelting on the microstructure and properties of plasma-sprayed NiCr-Cr3C2 coatings on steel substrates have been investigated. The microstructure of the coatings has been analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that the Cr3C2, δ-(Cr,Ni), Cr7C3 and Cr23C6 phases were obtained for both coatings, before and after remelting treatment. The laser remelting was operated in a continuous way with 800 W power in different scan speed, while the plasma arc remelting was operated with a plasma cladding machine under different scan currents. However, the denser microstructure of both remelted coatings can be obtained, especially for the plasma arc remelted coating. The Vickers microhardness measurement showed certain enhancement values for both remelted coatings. The corrosion behavior was evaluated through salt spray corrosion (SSC) method. Energy-dispersive spectroscopy (EDS) showed that the chloride was produced during SSC process. The higher corrosion resistance for plasma arc remelted coating may be due to the more compact microstructure, less porosity rate and tensile residual stress. Compared with laser remelting method, plasma arc remelting is a cheap, convenient and effective remelting method. 相似文献
2.
Weiyi Mu 《Surface & coatings technology》2008,202(17):4278-4284
Through micro-arc oxidation, the MgF2/ZrO2 composite coatings were prepared on magnesium at the different applied voltages (in the range of 400-550 V) in a zirconate electrolytic solution. The morphologies, phase components, microhardness, bond strengths, and corrosion resistances of the composite coatings were investigated. The effect of the applied voltages on the characteristics and properties of the composite coatings and the basic formation mechanism of the coatings were also discussed. The results indicate that the composite coatings are relatively dense and uniform in thickness, and predominantly composed of MgF2, tetragonal ZrO2 (t-ZrO2) and monoclinic ZrO2 (m-ZrO2). The composite coatings exhibit a gradient distribution in phase component from the surface to the inner part. It is found that the applied voltage plays an important role in the characteristics and properties of the composite coatings. With the increase of the applied voltage, the thickness and the t-ZrO2 content of the composite coatings increase, while the m-ZrO2 content decreases and no significant variation is observed in the MgF2 content. Moreover, the surface microhardness and bond strength of the coatings increases with the applied voltage increasing. The microhardness values display a gradient distribution in the cross sections of the coatings, and the maximum microhardness value and its corresponding position in the cross sections are related to the applied voltage. In addition, the corrosion resistances of the composite coatings on magnesium surface are obviously superior to the magnesium substrate in the NaCl solutions, and the effect is more remarkable at higher voltage. 相似文献
3.
The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys 总被引:1,自引:0,他引:1
Pure Al and 6061 aluminium alloy based Al2O3 particle-reinforced composite coatings were produced on AZ91E substrates using cold spray. The strength of the coating/substrate interface in tension was found to be stronger than the coating itself. The coatings have corrosion resistance similar to that of bulk pure aluminium in both salt spray and electrochemical tests. The wear resistance of the coatings is significantly better than that of the AZ91 Mg substrate, but the significant result is that the wear rate of the coatings is several decades lower than that of various bulk Al alloys tested for comparison. The effect of post-spray heat treatment, the volume fraction of Al2O3 within the coating and of the type of Al powder used in the coatings on the corrosion and wear resistance was also discussed. 相似文献
4.
Junhua Hu Guan Shaokang Caili Zhang Cuilian Wen Li Peng 《Surface & coatings technology》2009,203(14):2017-2020
TiO2 layer was prepared as a protective coating for AZ31 magnesium alloy by the liquid phase deposition (LPD) method followed by an annealing treatment. The structural evolution and crystallization of coating brought by annealing were investigated by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), respectively. The corrosion protection performance was evaluated in a three-electrode electrochemical examination system. The anatase TiO2 layer shows evident corrosion resistance. With the increase of the annealing temperature and prolongation of annealing time, the anticorrosion property was improved. The improvements of the anticorrosion properties were related with the structural evolution of the coating brought by the annealing treatment. 相似文献
5.
Sol-gel alumina coatings were developed on the surface pre-treated (zinc-phosphated) mild steel substrate and subsequently sintered at 300 °C, 400 °C and 500 °C. The alumina sol was synthesised using aluminium iso-propoxide as a precursor material. FTIR of the boehmite (AlOOH) gel sintered at above-mentioned temperatures was employed to identify the presence of various functional groups. The microstructural features and the phase analysis of the sol-gel coated specimens were carried out using SEM and XRD respectively. The corrosion resistance of the sol-gel alumina coatings was evaluated by electrochemical measurement in 3.5% NaCl solution at room temperature. The abrasive wear behaviour of the sol-gel coated specimens was measured in two body (high stress) conditions. The experimental results revealed that the sol-gel coated specimen sintered at 400 °C has superior wear and corrosion resistance properties as compared to the sol-gel coated specimen sintered at 300 °C. However, the sol-gel coated specimen sintered at 500 °C has exhibited a very poor corrosion and wear resistance properties. Poor performance of the sol-gel coatings sintered at 500 °C could be explained to be due to (i) the presence of numerous cracks (ii) absence of organic groups in the coating. 相似文献
6.
M. Zhang H. Yang T. Xian Z.Q. WeiJ.L. Jiang Y.C. FengX.Q. Liu 《Journal of Alloys and Compounds》2011,509(3):809-812
In this report, a polyacrylamide gel route is introduced to synthesize Bi2Fe4O9 nanoparticles. It is demonstrated that high-phase-purity Bi2Fe4O9 nanoparticles can be prepared using different chelating agents. Interestingly, however, the particle size of the products is found to be dependent on the choice of chelating agent. The use of EDTA as the chelating agent allows the production of Bi2Fe4O9 nanopowder with a relatively smaller particle size. The photocatalytic experiments reveal that the as-prepared Bi2Fe4O9 nanoparticles possess excellent photocatalytic activity for oxidative decomposition of methyl red under ultraviolet and visible light irradiation. Magnetic hysteresis loop measurement shows that the Bi2Fe4O9 nanoparticles exhibit a weak ferromagnetic behavior at room temperature. 相似文献
7.
Hybrid sol-gel coatings derived from a base catalyzed hydrolysis of tetraethylorthosilicate and methyltriethoxysilane were deposited on aluminum substrates by a dip coating technique. Some of the coatings were deposited on substrates whose surfaces were pre-treated using atmospheric-air plasma prior to coating in order to study the effect of surface activation by plasma pre-treatment. The coated substrates were heat treated in different ambiences like air, flowing N2 and vacuum to see the effect of heat treatment ambience on the properties of the coatings. Characterization of the coatings after heat treatment was carried out with respect to coating thickness, pencil scratch hardness, adhesion, water contact angle and their microstructure. Corrosion testing for all the coatings was carried out by electrochemical polarization measurements as well as electrochemical impedance spectroscopy in 3.5% NaCl solution for 1 h exposure time to investigate on their corrosion resistance. Coating thicknesses ranging from 1 μm-5 μm were obtained by varying the withdrawal speeds. Heat treatment in a controlled atmosphere with low oxygen content was seen to improve the hydrophobicity of coated surface, as measured by water contact angles (20o — air; 71o — N2; 95o — vacuum), thereby improving the corrosion resistance. Surface pre-treatment using open-air plasma was seen to improve the adhesion of the sol-gel coatings thus making it possible to obtain adherent and thick coatings in a single dip coating process. Both the methods of processing the coatings reduced the corrosion rate of aluminum from 1.95 mpy to 0.004 mpy in case of coatings densified in nitrogen and to 0.00068 mpy for coatings deposited on a plasma treated substrate and densified in air. 相似文献
8.
A nanocrystalline surface layer of about 25 μm thickness was fabricated on a quenched and tempered chrome-silicon alloy steel using Supersonic Fine Particles Bombardment (SFPB). The microstructural features in the treated surface layer were characterized using scanning electron microscopy and transmission electron microscopy observations. The grain size is about 16 nm in the top surface layer. Nanoindentation tests indicate the hardness of the top nanocrystalline layer is about 2 times of that of the matrix. The tribological behavior of the nanocrystalline surface layer was investigated under dry conditions. Experimental results show that the friction coefficients and wear volume loss of the surface nanocrystallized samples are lower than those of the untreated samples, and the wear resistance is remarkably improved. After surface nanocrystallization, there occurs a transition of dominant wear mechanics from the combined action of abrasive wear and adhesive wear to the abrasive wear. The advantages realized in the friction and wear properties of the SFPB treated sample may be attributed to the duo enhancement of the hardness and the surface activity caused by the grain refinement, which, in turn, result in the improvements in forming oxide layer and resistance to plastic removal. 相似文献
9.
A series of nanocomposite coatings (PBS) consisting of silane functional polybenzoxazine (PB-TMOS) and SiO2 nanoparticles were developed for corrosion protection of mild steel. The influence of silica content on corrosion resistance of PBS coatings was investigated by electrochemical measurements. The surface chemistry of nanoparticles and its effect on morphology of the PBS coating was also studied utilizing Fourier Transforms Infrared Spectroscopy, 29Si Nuclear Magnetic Resonance and Scanning Electron Microscopy analyses. The results indicate that the presence of the covalent bond between nanoparticles and PB-TMOS, greatly improves the interfacial interactions at the polymer/filler interfaces resulting in a better corrosion performance. 相似文献
10.
Giovanni Bolelli Valeria Cannillo Andreas Killinger Johannes Rauch 《Surface & coatings technology》2009,203(12):1722-1732
TiO2 coatings were manufactured by the High Velocity Suspension Flame Spraying (HVSFS) technique using a nanopowder suspension. Their microstructure, nanohardness, tribological properties and photocatalytic activity were studied and compared to conventional atmospheric plasma sprayed (APS) and HVOF-sprayed TiO2 coatings manufactured using commercially available feedstock. The HVSFS process leaves a fairly large freedom to adjust coating properties (thickness, porosity, anatase content, hardness, etc…) according to the desired objective. Layers with higher anatase content and higher porosity can be produced to achieve higher photocatalytic efficiency, better than conventional APS and HVOF TiO2. Alternatively, dense protective layers can be deposited, possessing lower porosity and pore interconnectivity and better wear resistance than as-deposited APS and HVOF layers. In all cases, HVSFS-deposited layers are thinner (20 µm-60 µm) than those which can be obtained by conventional spraying processes. 相似文献
11.
Xianfeng Du 《Surface & coatings technology》2008,202(10):1923-1927
A water-based bismuth titanate Bi4Ti3O12 (BTO) sol was synthesized by mixing bismuth nitrate, tetra-n-butyl titanate, lactic acid, acetic acid and distilled water. The sol was applied to low-voltage etched aluminum foil by dip-coating. The crystallization process of Bi4Ti3O12 on low-voltage etched aluminum foil was measured by thermal gravimetry-differential scanning calorimetry (TG-DSC) and high-temperature X-ray diffraction (HT-XRD). It was found that Bi4Ti3O12 sol first converted into intermediate phase Bi1.74Ti2O6.624, then transformed into perovskite phase Bi4Ti3O12. After annealed at 600 °C for 30 min in air, the low-voltage etched aluminum foil covered with Bi4Ti3O12 sol was anodized galvanostatically in 15 wt.% ammonium adipate solution. The voltage-time variation during anodizing was monitored and recorded. The structure and composition of samples were investigated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDAX). Results showed that the anodic composite oxide film was composed of an inner Al2O3 layer and an outer Bi4Ti3O12 layer. The specific capacitance and the product of specific capacitance and withstanding voltage of samples with a BTO coating were about 56.64% and 43.77% larger than that without a BTO coating. 相似文献
12.
To study the effect of ZrO2 particles on corrosion behaviour of Cr coating, steel samples were plated in Cr(VI) baths without and with ZrO2. The corrosion behaviour of plated samples was studied at different exposure times in a solution containing 0.01 mol l−1 H2SO4 + 0.5 mol l−1 Na2SO4 using cyclic voltammetry and impedance spectroscopy. The equivalent circuit model Re(QcRpore)(Qs[ORs]) was proposed to fit the corrosion process and the parameters Y0(Qc),Y0(Qs) and Rpore reflecting corrosion behaviour of samples were evaluated. From the results, it was found that samples plated in bath containing ZrO2 exhibited improved protective properties as a result of the structural characteristics of the coatings obtained; namely, the size and shape of pores. 相似文献
13.
C38 carbon steel have been plasma-nitrided using a radiofrequency cold plasma discharge treatment in order to investigate the influence of gas composition on corrosion behaviour of nitrided substrates. The investigated C38 steel was nitrided by a RF plasma discharge treatment using two different gas mixtures (75% N2/25% H2 and 25% N2/75% H2) at different times of plasma-treatment on non-heated substrates. Electron Probe Microanalysis (EPMA) showed that the nitrided layer formed using 75% N2/25% H2 gas mixture was thicker compared to those formed in the case of 25% N2/75% H2 or pure N2. The modifications of the corrosion resistance characteristics of plasma-nitrided C38 steel in 1 M HCl solution were investigated by weight loss measurements and ac impedance technique. The results obtained from these two evaluation methods were in good agreement. It was shown that the nitriding treatment in both cases (75% N2/25% H2 and 25% N2/75% H2) improves the corrosion resistance of investigated carbon steel, while the better performance is obtained for the 75% N2/25% H2 gas mixture. X-ray photoelectron spectroscopy (XPS) was carried out before and after immersion in corrosive medium in order to establish the mechanism of corrosion inhibition using N2/H2 cold plasma nitriding process. 相似文献
14.
Alloxazine (ALLOX) was tested as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution using non-electrochemical technique (gravimetric and UV–Visible spectrophotometric measurements) at 303–333 K. ALLOX acts as inhibitor for mild steel in acidic medium. Inhibition efficiency increases with increase in concentration of ALLOX but decrease with rise in temperature. The adsorption of ALLOX was found to follow Temkin adsorption isotherm model. Both the activation and thermodynamic parameters governing the adsorption process were calculated and discussed. The adsorption follows a first-order kinetics. DFT study gave further insight into the mechanism of inhibition action of ALLOX. 相似文献
15.
Plasma nitriding is a promising posttreatment technique to create a nitride layer on electroplated chromium coatings for improving their corrosion resistance. In the present study, the effects of plasma nitriding on the corrosion properties of electroplated chromium/C45 mild steel were investigated using electrochemical characterization. The chromium plated samples were nitrided using a pulsed direct current glow discharge in an NH3 atmosphere. The polarization curve measurement results showed that the plasma nitrided samples exhibited more positive corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and evident passivation when compared with unnitrided chromium plating/substrate system. The high value of Ecorr and low value of Icorr imply an improvement of the corrosion resistance of the coating/substrate system after plasma nitriding. 相似文献
16.
Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water + isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters.The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 μm) coatings, consisting of well-flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~ 1-2 μm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to > 50%), as no particle or agglomerate larger than ~ 2.5 μm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to a few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surface chemistry), poor deposition efficiencies and porous layers are obtained.Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~ 70%) is obtained by suitable mixtures of micron- and nano-sized powders, on account of synergistic effects. 相似文献
17.
Belén Díaz Emma Härkönen Jolanta ?wiatowska Vincent Maurice Antoine Seyeux Philippe Marcus Mikko Ritala 《Corrosion Science》2011,(6):2168-2175
ToF-SIMS, XPS, voltammetry and EIS investigation of the anti-corrosion properties of thin (10, 50 and 100 nm) alumina coatings grown by atomic layer deposition at 160 °C on steel is reported. Surface analysis shows a thickness-independent Al2O3 stoichiometry of the coating and trace contamination by the growth precursors. The buried coating/alloy interface has iron oxide formed in ambient air and/or resulting from the growth of spurious traces in the initial stages of deposition. Electrochemical analysis yields an exponential decay of the coating porosity over four orders of magnitude with increasing thickness, achieved by sealing of the more defective first deposited 10 nm. 相似文献
18.
Effects of plasma treatment on bioactivity of TiO2 coatings 总被引:1,自引:0,他引:1
In this work, nano-TiO2 powders were deposited on titanium alloy substrates by atmospheric plasma spraying, followed by plasma immersion ion implantation (PIII) using hydrogen, oxygen and ammonia gases. The bioactivities of PIII-treated TiO2 coatings were evaluated by the formation of apatite on their surface after soaked in simulated body fluids (SBF) for a period of time. As-sprayed TiO2 coating is composed of rutile, anatase and TiO2−x (most of them is Ti3O5). After immersion in SBF for two weeks, the hydrogen PIII-treated TiO2 coating can induce bone-like apatite formation on its surface but apatite cannot be formed on the surface of as-sprayed and oxygen, ammonia PIII-treated TiO2 coatings. The results obtained indicated that a hydrogenated surface plays a very important role to induce bioactivity of TiO2 coatings. 相似文献
19.
Xiankang Zhong Qing Li Bo Chen Juping Wang Junying Hu Wei Hu 《Corrosion Science》2009,51(12):2950-2958
A novel anti-corrosion sol–gel based Al2O3 coating was developed on the AZ91D magnesium alloy. The morphology, microstructure and composition of the coatings were investigated by scanning electron microscope coupled with energy dispersive spectroscopy, Fourier transform infrared spectrum analysis, X-ray diffraction, thermo-gravimetric and differential thermal analysis. The corrosion resistance of the coatings in 3.5 NaCl wt.% solution was studied using electrochemical measurements. The results demonstrated that a homogeneous Al2O3 coating could be obtained and the sol–gel coated samples sintered at 380 °C had the best corrosion resistance properties as compared to the specimens sintered at 120 and 280 °C. 相似文献
20.
The electrochemical corrosion behaviours of the steel substrates coated with three different plasma sprayed Al2O3–13%TiO2 coatings were studied in this paper. The three kinds of Al2O3–13%TiO2 coatings were conventional ME coating, nanostructured NP coating and NS coating. There were micro cracks, laminar splats and straight columnar grains in ME coating. For the two nanostructured coatings, the laminar microstructure and columnar grains were not obvious. The NP coating had the highest hardness and spallation resistance. Electrochemical corrosion behaviour of the three coatings was mainly investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in aqueous Na2SO4 solution. 相似文献