首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel TiAl3-Al coating was prepared by cold spray for high temperature protection of titanium aluminum-based alloy. The substrate alloy was orthorhombic-Ti-22Al-26Nb (at.%). The composite coating was mainly composed of TiAl3 embedded in the matrix of residual aluminum. An interlayer about 10 μm was formed between the coating and the substrate. The oxidation test indicated that this composite coating was very effective in improving the high-temperature oxidation resistance of the substrate alloy at 950 °C in the tested 150 cycles without any sign of degradation. The microstructure analysis of the oxidized composite coating showed that an Al2O3 scale with a complex structure can be formed outside the interlayer during oxidation and no oxides beneath the interlayer were detected, which indicated that the complex continuous Al2O3 and the interlayer provide the protection of the substrate at high-temperature oxidation condition.  相似文献   

2.
The oxidation behaviour of an intermetallic alloy, Ti-46.7Al-1.9W-0.5Si, was studied in air and Ar-20%O2 atmospheres at 750, 850 and 950 °C. Oxidation of the alloy followed a parabolic rate law at low temperature (750 °C) in both environments. The alloy oxidised parabolically in air and at a slower rate in Ar-20%O2 at 850 °C. Following a parabolic oxidation for a relatively short exposure period (72 h) at 950 °C, the oxidation rate was reduced after prolonged exposure (up to 240 h) in air. The alloy oxidised in a slower manner in the Ar-20%O2 atmosphere at 950 °C. Higher oxidation rates were observed in air than in Ar-20%O2 at all three experimental temperatures. Multi-layered scales developed in both environments. The scale formed in air consisted of TiO2/Al2O3/TiO2/TiN/TiAl2 layers, ranging from the surface to the substrate—whilst the scale developed in the Ar-20%O2 atmosphere comprised of the sequence TiO2/Al2O3/TiO2/Al2O3/Ti3Al/substrate. The two layers of Al2O3 in Ar-20%O2 were more effective in providing protection of the substrate against high temperature corrosion than the single layer of Al2O3 formed in air.  相似文献   

3.
Preparation of TiAl3-Al composite coating by cold spraying   总被引:1,自引:0,他引:1  
TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3:1 when the spraying distance, gas temperature and gas pressure for the process were 10 mm, 250 °C and 1.8 MPa, respectively. The as-sprayed coating was then subjected to heat treatment at 630 °C in argon atmosphere for 5 h at a heating rate of 3 °C/min and an argon gas flow rate of 40 mL/min. The obtained TiAl3-Al composite coating is about 212 μm with a density of 3.16 g/cm3 and a porosity of 14.69% in general. The microhardness and bonding strength for the composite coating are HV525 and 27.12 MPa.  相似文献   

4.
A novel electroplating method has been developed to produce nanocrystalline metal-matrix nano-structured composite coatings. A small amount of transparent TiO2 sol was added into the traditional electroplating Ni solution, leading to the formation of nanocrystalline Ni-TiO2 composite coatings. These coatings have a smooth surface. The Ni nodules changed from traditional pyramid-like shape to spherical shape. The grain size of Ni was also significantly reduced to the level of 50 nm. It was found that the amorphous anatase TiO2 nano-particles (∼ 10 nm) were highly dispersed in the coating matrix. The microhardness was significantly increased from 320 HV100 of the traditional Ni coating to 430 HV100 of the novel composite coating with 3.26 wt.% TiO2. Correspondingly, the wear resistance of the composite coating was improved by ∼ 50%.  相似文献   

5.
A new processing concept has been developed to produce nano-structured metal-matrix composite coatings. This method combines sol-gel and electroless plating techniques to prepare highly dispersive oxide nano-particle reinforced composite coatings. Transparent TiO2 sol was added into the standard electroless plated Ni-P solution at a controlled rate to produce Ni-P-TiO2 nano-composite coatings on Mg alloys. The coating was found to have a crystalline structure. The nano-sized TiO2 particles (∼ 15 nm) were well dispersed into the Ni-P coating matrix during the co-deposition process. This technique can effectively avoid the agglomeration of nano-particles in the coating matrix. As a result, the microhardness of the composite coatings were significantly increased to ∼ 1025 HV200 compared to ∼ 710 HV200 of the conventional composite coatings produced with solid particle mixing methods. Correspondingly, the wear resistance of the new composite coatings was also greatly improved.  相似文献   

6.
In this work, 6061 series aluminum alloy is used as the matrix material for its wide application in engineering to make AlON coating layers by the electrolytic plasma processing (EPP) method. The experimental electrolytes include: 10 g/L NaAlO2 as alumina formative agent, 2 g/L NaOH as the electrolytic conductive agent, 0.4 g/L NaNO3 as a nitride supply agent. A combined composition and structure analysis of the coating layer was carried out by X-ray diffractometer (XRD) and scanning electron microscopy (SEM) for the specimens EPP-treated at 25 °C in 5 to 30 min under a hybrid voltage of 260 V DC plus AC 50 Hz power supplies (200 V). In addition, microhardness values were measured to correlate the evolution of microstructure and resulting mechanical properties. A composite of AlON-Al2O3 coating was formed as a result of a reactive process between Al in the alloy itself and O-N supplied by the electrolyte, which presents high hardness and anti-abrasion behaviors.  相似文献   

7.
Novel YSZ (6 wt.% yttria partially stabilized zirconia)-(Al2O3/YAG) (alumina-yttrium aluminum garnet, Y3Al5O12) double-layer ceramic coatings were fabricated using the composite sol-gel and pressure filtration microwave sintering (PFMS) technologies. The thin Al2O3/YAG layer had good adherence with substrate and thick YSZ top layer, which presented the structure of micro-sized YAG particles embedded in nano-sized α-Al2O3 film. Cyclic oxidation tests at 1000 °C indicated that they possessed superior properties to resist oxidation of alloy and improve the spallation resistance. The thermal insulation capability tests at 1000 °C and 1100 °C indicate that the 250 μm coating had better thermal barrier effect than that of the 150 μm coating at different cooling gas rates. These beneficial effects should be mainly attributed to that, the oxidation rate of thermal grown oxides (TGO) scale is decreased by the “sealing effect” of α-Al2O3, the “reactive element effect”, and the reduced thermal stresses by means of nano/micro composite structure. This double-layer coating can be considered as a promising TBC.  相似文献   

8.
An ∼ 5 µm Cr2AlC coating was synthesized on near-α titanium alloy Ti6242 using an industrially sized magnetron sputtering coater. Isothermal oxidation at 700 °C and 800 °C, and cyclic oxidation at 700 °C of the bare alloys and coated specimens were investigated in air. The results indicated that the Ti6242 alloy faced serious oxidation problems at 700 °C and 800 °C. Repeated formation and spallation of the multilayered oxide scale on the Ti6242 alloy occurred during oxidation testing. The coated specimens exhibited much better oxidation behaviour as compared to the bare alloy. A continuous Al-rich oxide scale formed on the coating surface during the initial oxidation stages. The oxide scale and coating itself acted as diffusion barriers blocking the further ingress of oxygen and protected the substrate alloy from oxidation. The oxidation mechanisms of the bare alloy and the coated specimens were investigated based on the experimental results.  相似文献   

9.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8-xTiO2 composite ceramics with different weight percentages of BaCu(B2O5) additive prepared by solid-state reaction method have been investigated using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the microwave dielectric properties were strongly dependent on densification, grain sizes and crystalline phases. The sintering temperature of ZnTiNb2O8 ceramics was reduced from 1250 °C to 950 °C by doping BaCu(B2O5) additive and the temperature coefficient of resonant frequency (τf) was adjusted from negative value of −52 ppm/°C to 0 ppm/°C by incorporating TiO2. Addition of 2 wt% BaCu(B2O5) in ZnTiNb2O8-xTiO2 (x = 0.8) ceramics sintered at 950 °C showed excellent dielectric properties of ?r = 38.89, Q × f = 14,500 GHz (f = 4.715 GHz) and τf = 0 ppm/°C, which represented very promising candidates as LTCC dielectrics for LTCC applications.  相似文献   

10.
The composite ceramics of Ba0.55Sr0.4Ca0.05TiO3-CaTiSiO5-Mg2TiO4 (BSCT-CTS-MT) were prepared by the conventional solid-state route. The sintering performance, phase structures, morphologies, and dielectric properties of the composite ceramics were investigated. The BSCT-CTS-MT ceramics were sintered at 1100 °C and possessed dense microstructure. The dielectric constant was tailored from 1196 to 141 as the amount of Mg2TiO4 increased from 0 to 50 wt%. The dielectric constant and dielectric loss of 40 wt% Ba0.55Sr0.4Ca0.05TiO3-10 wt% CaTiSiO5-50 wt% Mg2TiO4 was 141 and 0.0020, respectively, and the tunability was 8.64% under a DC electric field of 8.0 kV/cm. The Curie peaks were broadened and depressed after the addition of CaTiSiO5. The optimistic dielectric properties made it a promising candidate for the application of tunable capacitors and phase shifters.  相似文献   

11.
(1 − x)ZnMoO4-xTiO2 (x = 0.0, 0.05, 0.158, 0.25, and 0.35) composite ceramics were synthesized by the conventional solid state reaction process. The sintering behavior, phase composition, chemical compatibility with silver, and microwave dielectric properties were investigated. All the specimens can be well densified below 950 °C. From the X-ray diffraction analysis, it indicates that the triclinic wolframite ZnMoO4 phase coexists with the tetragonal rutile TiO2 phase, and it is easy for silver to react with ZnMoO4 to form Ag2Zn2(MoO4)3 phase and hard to react with TiO2. When the volume fraction of TiO2 (x value) increasing from 0 to 0.35, the microwave dielectric permittivity of the (1 − x)ZnMoO4-xTiO2 composite ceramics increases from 8.0 to 25.2, the Qf value changes in the range of 32,300-43,300 GHz, and the temperature coefficient τf value varies from −128.9 to 157.4 ppm/°C. At x = 0.158, the mixture exhibits good microwave dielectric properties with a ?r = 13.9, a Qf = 40,400 GHz, and a τf = +2.0 ppm/°C.  相似文献   

12.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

13.
Dengzun Yao 《Corrosion Science》2010,52(8):2603-2611
A Mo-Si-Al coating, which is mainly composed of Mo(Si,Al)2 and Mo5(Si,Al)3, was developed to protect a Nbss/Nb5Si3 in situ composite by air plasma spraying. After oxidation at 1250 °C, the oxidation curve followed parabolic law and even after oxidation for 100 h, the weight gain of Mo-Si-Al coating was 8.24 mg/cm2. The surface of the oxidized samples became flatter and smoother as time increased due to the formation of SiO2 glass. Moreover, the microstructure of Mo-Si-Al coating changed and a layer structured interdiffusion zone was formed at the substrate-coating interface after oxidation.  相似文献   

14.
This paper presents the results of investigation carried out on synthesis and densification of monolithic HfB2 and the effect of TiSi2 as sinter additive. Pure phase HfB2 was prepared by boron carbide reduction of HfO2 and hot pressed to full density with the addition of TiSi2. Isothermal oxidation study of this composite was carried out at 850 °C up to 64 h. Formation of HfB2 was seen at 1200 °C but pure HfB2 was formed at a much higher temperature of 1875 °C in vacuum. Hot pressing of HfB2 at 1850 °C and 35 MPa pressure gave a compact of 80% TD. Addition of TiSi2 helped in achieving a much higher density at a lower temperature of 1600 °C and a pressure of 20 MPa. A fully dense composite of HfB2 and TiSi2 was obtained with 15% TiSi2. Hardness and fracture toughness of this composite were 27.4 ± 1.9 GPa and 6.6 ± 0.2 MPa m1/2, respectively. Considerable deflection was observed in the crack propagation in composites. Oxidation studies indicated the formation of HfO2, SiO2, TiO2 and HfSiO4 with some glassy phase and the composite with 15% TiSi2 was seen to be completely covered with a protective glassy layer.  相似文献   

15.
X.H Wang 《Corrosion Science》2003,45(5):891-907
The isothermal oxidation behavior of bulk Ti3AlC2 has been investigated at 1000-1400 °C in air for exposure times up to 20 h by means of TGA, XRD, SEM and EDS. It has been demonstrated that Ti3AlC2 has excellent oxidation resistance. The oxidation of Ti3AlC2 generally followed a parabolic rate law with parabolic rate constants, kp that increased from 4.1×10−11 to 1.7×10−8 kg2 m−4 s−1 as the temperature increased from 1000 to 1400 °C. The scales formed at temperatures below 1300 °C were dense, adherent, resistant to cyclic oxidation and layered. The inner layer of these scales formed at temperatures below 1300 °C was continuous α-Al2O3. The outer layer changed from rutile TiO2 at temperatures below 1200 °C to a mixture of Al2TiO5 and TiO2 at 1300 °C. In the samples oxidized at 1400 °C, the scale consisted of a mixture of Al2TiO5 and, predominantly, α-Al2O3, while the adhesion of the scales to the substrates was less than that at the lower temperatures. Effect of carbon monoxide at scale/substrate was involved in the formation of the continuous Al2O3 layers.  相似文献   

16.
Geng  Shujiang  Wang  Fuhui  Zhu  Shenglong 《Oxidation of Metals》2002,57(3-4):231-243
A sputtered nanocrystalline coating of IN 738 alloy was obtained by means of magnetron sputtering. The isothermal oxidation behavior at 800, 900, and 1000°C and the cyclic oxidation behavior at 950°C of the coating were studied in comparison with IN 738 cast alloy. The results indicated that a double external oxide scale was formed on the nanocrystalline coating at 900, 950, and 1000°C without internal oxide and nitride. The scale consisted in an outer mixture of Cr2O3, TiO2, and NiCr2O4 and an inner, continuous Al2O3 layer, which offered good adhesive and protectiveness. However, at 800°C a continuous Al2O3 scale could not be formed during oxidation of nanocrystalline coating and aluminum was still oxidized internally.  相似文献   

17.
WC-(W,Cr)2C-Ni coating was prepared by high velocity oxy-fuel spraying (HVOF). The microstructure and phase composition of the as-sprayed coating and that after oxidation at high temperature were analyzed by means of scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The oxidation behavior of as-sprayed coating and starting powders was evaluated by thermogravimetry. Dry sliding friction and wear behavior of the WC-(W,Cr)2C-Ni coating sliding against Si3N4 ball at different temperatures (room temperature 20 °C and elevated temperature of 700 °C and 800 °C) was evaluated using an oscillating friction and wear tester. Besides, the microhardness and fracture toughness of the coating was also measured. Results show that sintering agglomerated WC-20 wt.%Cr-7 wt.%Ni powder is an effective method to prepare agglomerated and sintered WC-(W,Cr)2C-Ni composite powder. The excellent oxidation resistance of WC-(W,Cr)2C-Ni coating is mainly resulted from a double-decker shell-core microstructure formed in the coating. The composition of the outer shell is (W,Cr)2C phase and that of the inner shell is Cr3C2. During high-temperature friction and wear test, well remained hard WC phase in the WC-(W,Cr)2C-Ni coating can guarantee its good mechanical properties and wear resistance, and newly generated nano NiWO4, CrWO4 and Cr2WO6 particles can further improve these properties significantly.  相似文献   

18.
目的在铝合金表面制备Al2O3-TiB2-Al复合涂层,研究Al,TiO2,B2O3在等离子喷涂中的反应机理。方法采用反应等离子喷涂技术在铝合金表面制备复合涂层,应用扫描电镜与X射线衍射技术测试复合涂层的物相组成和显微组织,并通过燃烧波淬熄试验分析等离子喷涂产物。结果机械球磨可以有效降低粉末发生反应的活化能,等离子喷涂最佳飞行距离范围为150~200 mm。结论喷涂粉末在飞行过程中发生反应,经历了预热、熔化、分解、团聚等过程,验证了最终引燃发生燃烧化学反应的机理。  相似文献   

19.
A Cr2AlC coating was deposited on a β-γ TiAl alloy. Isothermal oxidation tests at 700 °C and 800 °C, and thermocyclic oxidation at 800 °C were performed in air. The results indicated that serious oxidation occurred on the bare alloy. Thick non-protective oxide scales consisting of mixed TiO2 + α-Al2O3 layers formed on the alloy surface. The coated specimens exhibited much better oxidation behaviour by forming an Al-rich oxide scale on the coating surface during the initial stages of oxidation. This scale acts as diffusion barrier by effectively blocking the ingress of oxygen, and effectively protects the coated alloys from further oxidation.  相似文献   

20.
Ion-plated Al-Al2O3 cermet films were fabricated as diffusion barriers between NiCrAlY coating and orthhombic-Ti2AlNb alloy. The oxidation and interdiffusion behaviour of coatings with and without diffusion barrier were investigated in isothermal and cyclic oxidation tests at 800 °C. The results indicated that substantial interdiffusion and rapid oxidation degradation occurred in the coated specimens without diffusion barrier. With Al-Al2O3 diffusion barriers, deferred interdiffusion and improved oxidation resistance was observed. Among them, duplex coating containing 1Al-Al2O3 interlayer exhibited the best performance. Coefficient of diffusion hindering and factor of reaction hindering were proposed to compare and quantify the efficiency of the diffusion barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号