首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Oxide films have been produced on AM60B magnesium alloy by micro-arc anodic oxidation in an environmentally friendly alkaline solution, with and without addition of nanoparticles (TiO2, ZrO2 and Al2O3). Because of the anodic oxide porosity, inherent in the sparking process, organo-functional silanes top coat has been applied to seal pores and cracks, and achieve an efficient protective coating system. The surface and cross-section morphology of samples were analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS). Scratch tests were performed for evaluating the adhesion strength and scratch hardness of the anodic oxides to the AM60B substrate. The corrosion resistance of both anodic oxides and oxide/silane composite coatings was evaluated in 0.6 M NaCl solution using potentiodynamic polarization tests. The addition of nanoparticles to the anodizing solution doesn't affect significantly the corrosion resistance in comparison with anodic oxides produced in nanoparticles free solutions. Conversely, the adhesion strength and scratch hardness of the anodic oxides to the substrate is quite scattered, and it is higher for the samples produced in ZrO2 and in Al2O3 rich solutions. For this reason specimens anodized in ZrO2 and Al2O3 containing solutions were chosen for silane deposition. Two silanes were used, namely octyltrimethoxysilane (OSi) and 1, 2-bis [triethoxysilyl] ethane (BTSE). The anodizing treatment carried out in oxides nanoparticles containing solutions (ZrO2 or Al2O3), followed by a silane top coat treatment performed using OSi precursor, is an interesting way, suitable for industrial applications, to synthesize adherent corrosion resistant coatings on magnesium alloy AM60B in a short process time.  相似文献   

2.
《金属精饰学会汇刊》2013,91(6):336-341
Abstract

Various oxide film layers were grown onto AZ31 and AM60 magnesium alloy substrates by micro-arc anodic oxidation (MAO) in alkaline phosphate solutions with different additives such as silicate, aluminate and tetraborate. Surface morphologies and phase composition of the films were assessed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The adhesion strength of the anodic oxides was evaluated by scratch testing. The electrolyte composition affects the surface morphology and the adhesion of the oxides to the alloy substrates. The anodising solution consisting of phosphate, tetraborate and silicate produces a better oxides adhesion compared to those achieved in other electrolytic solutions.  相似文献   

3.
Anodising of AM60 magnesium alloy (6% Al + 0.27% Mn) was studied in a solution containing 1.5 M KOH + 0.5 M KF + 0.25 M Na2HPO4 · 12H2O with addition of various NaAlO2 concentrations. The experiments were carried out in DC current galvanostatic mode. Observations of phenomena occurring at the sample surface plus voltage monitoring revealed three stages: traditional anodising, followed by microarc anodising and finally arcing. The film was porous and cracked, with poor bonding to the substrate. It was composed of magnesium and aluminium oxide, and contained all the elements present in the electrolyte. The aluminium concentration in the film was dependent on the concentration of aluminate ions in the electrolyte. The transition from microarc to arcing stage took place when the alloy surface was completely covered by the anodic film.  相似文献   

4.
Anodic films were prepared on the AZ91D magnesium alloy in 1.0 M and 1.5 M Na2SiO3 with varied silica sol addition under the constant current density of 20 mA/cm2 at 18 °C. The surface and cross-section morphologies of the anodic films were characterized by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS). The results showed that both the surface morphologies and the thickness of the anodic film were affected by the concentration of Na2SiO3 and the additions of silica sol. The effects of Na2SiO3 concentration and silica sol addition on the solution properties were also investigated. The results showed that the addition of silica sol into Na2SiO3 solution could decrease the surface energy and the conductivity of the solution. Moreover, the anodic film formed in 1.5 M Na2SiO3 with addition of silica sol was more uniform and compact than that formed in 1.0 M Na2SiO3 with addition of silica sol. And the electrochemical impedance spectroscopy (EIS) results also indicated that the anodic film formed in 1.5 M Na2SiO3 solution with 5 vol.% silica sol addition could provide higher corrosion resistance than that formed in 1.0 M Na2SiO3 with the same silica sol addition for the AZ91D Mg alloy substrate.  相似文献   

5.
Characterization of anodic films formed on AZ91D magnesium alloy   总被引:15,自引:0,他引:15  
Anodization of die-casted AZ91D magnesium alloy was performed in 3 M KOH+0.21 M Na3PO4+0.6 M KF base electrolyte with and without Al(NO3)3 addition. The anodic film was characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the various anodized alloys was then evaluated in 3.5 wt % NaCl solution using electrochemical impedance spectroscopy (EIS) and immersion testing. The results showed that the anodic film was mainly composed of MgO. The addition of Al(NO3)3 into the base electrolyte results in the formation of Al2O3 and Al(OH)3 in the anodic film. The maximum amount of Al2O3 was found in the anodic film when the alloy was anodized in the electrolyte containing 0.15 M Al(NO3)3. The results of EIS analysis and morphological examination showed that the MgO anodic film modified with Al2O3 exhibited the superior corrosiom resistance for AZ91D Mg alloy.  相似文献   

6.
在电解液中添加HfO2对Ti-6Al-4V钛合金进行微弧氧化处理,通过表征微弧氧化膜表、截面形貌,膜层成分及电化学行为,并测量膜层厚度、硬度、粗糙度等参数来研究添加HfO2对钛合金微弧氧化膜层特性的影响。结果表明:添加HfO2后,微弧氧化膜层主要成分是Al2TiO5、TiO2和γ-Al2O3。较合适浓度的HfO2能促进成膜反应,改善微弧氧化膜的微观结构,提高膜层的厚度、硬度并降低表面粗糙度,且膜层试样具有双层膜结构,膜层试样的耐腐蚀性能好于原基体。HfO2浓度为3.0g/L时所获得的微弧氧化膜层综合性能最佳。  相似文献   

7.
Micro-arc oxidation (MAO) process was cartied out in an optimized dual electrolyte system to fabricate a compact, smooth, and corrosion resistant coating on ZK60 Mg alloy. The microstructural characteristics of coating were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). Test of mass loss was conducted at a 3.5 % NaCl solution to assess the resistance to corrosion. The bonding strength between the coating and ZK60 substrate was evaluated using scratch experiment. The results reveal that MgA1204 and MgO are the main phases of ceramic coating obtained in the dual electrolyte system. The corrosion rate of coating prepared in the optimized dual electrolyte is only 0.0061 g.m-2.h-1, which demonstrates excellent corrosion resistance. This is mainly due to the compact, uniform coating with high bonding strength.  相似文献   

8.
通过改变硅酸盐体系电解液中KF和Na2SiO3的浓度,定量分析氟化钾与硅酸钠浓度配比(简称氟硅比)对AM60B镁合金微弧氧化膜层微观结构及耐蚀性的影响.结果表明:主盐Na2SiO3在微弧氧化成膜中必不可少.当电解液中含有KF时(氟硅比大于0),随着氟硅比的增大,成膜反应加剧,膜层表面的孔隙率和表面大孔(>3 μm)数目...  相似文献   

9.
In this study, the commercial pure magnesium was coated in different aqueous solutions of Na2SiO3 and Na3PO4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg2SiO4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg3(PO4)2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg2SiO4 is more resistant to corrosion than that containing Mg3(PO4)2.  相似文献   

10.
在含有In2S3的硅酸盐电解液中对ZL108铝合金进行了微弧氧化处理.采用扫描电镜(SEM)、光学轮廓仪、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学工作站等检测手段,研究了添加In2S3对MAO膜层微观结构、相组成和耐蚀性等的影响.结果表明,In2S3的加入提高了微弧氧化电压,使膜层成膜速率增加,从而导致...  相似文献   

11.
Plasma electrolytic oxidation of Mg-based AM60 alloys was investigated using 50 Hz AC anodizing technique in an alkaline borate solution, which contained a new kind of organic. The anodic film is relatively smooth with some micro pores and cracks, while the anodic film consists of MgO, MgAl2O4 and MgSiO3. The electrochemical behavior of anodic film was studied by electrochemical impedance spectroscopy and potentiodynamic polarization. Polarization results indicate the PEO treatment can decrease corrosion current by 3-4 magnitude compared with blank AM60 alloy. The anodic film presents a good level of corrosion protection for AM60 magnesium alloy, over 272 h of the salt spray test based on ASTM B 117. The effect of micro-structure and composition on corrosion protection efficiency was also investigated.  相似文献   

12.
提出了一种以镁合阳极极化曲线来判断微弧氧化起弧难易的新方法。在不同的电解液中,测试了镁合金的阳极极化曲线及微弧氧化的起弧特性。结果表明,起弧电压首先与其在对应电解液中进行阳极极化时形成的钝化膜的稳定性有关:膜层越稳定,即阳极极化曲线上钝化区宽度越宽,则在相应的电解液中微弧氧化起弧电压越低;当钝化区间宽度相近时,则在钝化区间后期极化电流越小,起弧电压越低。  相似文献   

13.
An AZ91D magnesium alloy was treated using duplex techniques of laser surface melting (LSM) and plasma electrolytic oxidation (PEO). The microstructure, composition and corrosion behavior of the laser melted surface, PEO coatings, LSM–PEO duplex coatings as well as the as-received specimen were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electrochemical corrosion tests, respectively. Especially, the effect of LSM pre-treatment on the microstructure, composition and corrosion resistance of the PEO coatings was investigated. Results showed that the corrosion resistance of AZ91D alloy was marginally improved by LSM due to the refinement of grains, redistribution of β-phase (Mg17Al12) and increase of Al on the surface. Both the PEO and duplex (LSM–PEO) coatings improved significantly the corrosion resistance of the AZ91D alloys, while the duplex (LSM–PEO) coating exhibited better corrosion resistance compared with the PEO coating.  相似文献   

14.
Plasma electrolytic oxidation films on AZ31 magnesium alloy were prepared in silicate–KOH–glycol (base electrolyte) electrolyte with the addition of different KF concentration. The effect of KF on the characteristic of discharge in electrolytes was studied. The compositions, structures and morphologies of the oxide films formed in different KF concentration were determined by energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Corrosion behavior of the oxide films was evaluated in 3.5 wt.% NaCl solution using potentiodynamic polarization tests, electrochemical impedance spectroscopy and potentiodynamic scanning tests. The films were mainly composed of Mg, Al, O, C, Si as well as a trace of Na and K. Major phases were MgSiO3 and forsterite Mg2SiO4. The appearance of KF in the base electrolyte resulted in the decrease of the equilibrium current density and the appearance of MgF2 in the films. Corrosion resistance depends on the amount of MgF2 composition in the films. The films formed in the electrolyte containing 8.0 g/L KF exhibit the highest uniform corrosion resistance and the lowest pitting-corrosion tendency in NaCl solution.  相似文献   

15.
Effect of anodic oxidation on fatigue performance of 7075-T6 alloy for pre-corroded and non-corroded specimens has been investigated by conducting a series of rotary bending fatigue tests at 95 Hz. The anodized specimens with different coating thickness (6, 12 and 23 μm) were exposed to 3.5 wt.% NaCl solution for 6, 48, 96 and 240 h. The results indicate that oxidation has a tendency to decrease the fatigue performance. Fatigue strength was reduced with increasing coating thickness; approximately 40% reduction for a 23 μm thick coating was obtained. It was observed that oxidation mitigated pitting corrosion. Superior corrosion resistance was obtained for the thickest coating layer. Fatigue tests with pre-corroded specimens showed that fatigue life of coated specimens was significantly affected by pre-corrosion, except for the specimen with the thickest coating layer. When the pre-corroded bare and coated specimens were compared, the coating improved the fatigue performance in high cycle fatigue (> 105) only and it degraded the fatigue performance in low cycle regime.  相似文献   

16.
Microarc oxidation (MAO) films on AZ31 magnesium alloy were treated by high-intensity pulsed ion beam (HIPIB) irradiation with ion energy of 300 keV at ion current density of 200 A/cm2. A remelted layer of a few micrometers was produced on irradiated MAO films. The corrosion resistance of MAO films was characterized by potentiodynamic electrochemical test in 3.5% NaCl solution. The anodic polarization behavior of MAO samples exhibited a transition from the active anodic dissolution for the original one to the passivation-pitting breakdown for the modified films. The passivation-pitting breakdown voltage of modified films increased with multi-shot irradiation, i.e. from a value of − 1420 mV(SCE) at 1 shot to − 800 mV(SCE) at 5 shots, and the corresponding passivation current density decreased by two orders of magnitude. The irradiated MAO films have a higher corrosion potential than the original one, reaching a maximal value of − 1350 mV(SCE) at 5 shots from the original − 1580 mV(SCE). The electrochemical impedance spectrum (EIS) of modified MAO films was measured with varying the immersion time in 3.5% NaCl solution. The Nyquist impedance plots from modified films may show only a capacitive loop at the immersion time of 5 h, and the inductive loop occur at longer immersion time, whereas original films presenting both capacitive and inductive loops at all the immersion time. Bode plots of MAO films before and after irradiation were obviously distinguished in shape at low frequency range, especially at short immersion time. The evolution of Nyquist and Bode plots with immersion time was discussed in association with the processes of electrolyte penetration into the MAO structure and resultant reaction at the film-substrate interface. It is concluded that the improvement in the continuity and compaction of MAO films accounts for the enhanced corrosion resistance of the films irradiated by HIPIB.  相似文献   

17.
为了提高烧结NdFeB永磁体的耐蚀性,本文在铝酸盐溶液中采用二步微弧氧化工艺在烧结NdFeB永磁体表面制备了氧化铝陶瓷涂层。微弧氧化过程中,电压-时间曲线可大致分为四个阶段,与阀金属处理的曲线基本一致。烧结NdFeB表面制备的涂层呈现出典型的微弧氧化多孔形貌,厚度大约为5 μm。涂层中仅含有Al2O3结晶相,并含有少量的Fe、Nd和P元素。微弧氧化处理后,烧结NdFeB的表面粗糙度有所增加,耐蚀性较基体提高了1个数量级。然后,微弧氧化处理后,烧结NdFeB磁体的剩磁和最大磁能积较未处理NdFeB有所下降。  相似文献   

18.
This paper is concerned with the surface modification of titanium by the PEO method (plasma electrolytic oxidation) in the solutions which contain Ca, P, Si and Na. The chemical composition of the thus formed surface layers was examined by XPS and EDS. The morphology of the surface was observed by SEM. The phase composition was determined by X-ray diffraction (XRD). The adhesive strength of the oxide layers was evaluated by the scratch-test. The corrosion resistance was determined in a simulated body fluid (SBF) at a temperature of 37 °C by electrochemical methods for various exposure times.The oxide layers obtained were porous and enriched with Ca, P, Si and Na and their properties depended on the electrolyte solution and the parameters of the oxidation process. The results of the electrochemical examinations show that the surface modification by PEO does not worsen the corrosion resistance of titanium after a 13 h exposure in SBF. The electrochemical impedance spectroscopy (EIS) results indicate that the surface layers have a complex structure and that their electric properties undergo changes during long-term exposures in SBF.  相似文献   

19.
Magnesium alloys are increasingly being used as lightweight materials in the automotive, defense, electronics, biomaterial and aerospace industries. However, their inherently poor corrosion and wear resistance have, so far, limited their application. Plasma electrolytic oxidation (PEO) in an environmentally friendly aluminates electrolyte has been used to produce oxide coatings with thicknesses of ~ 80 μm on an AJ62 magnesium alloy. Optical emission spectroscopy (OES) in the visible and near ultraviolet (NUV) band (285 nm–800 nm) was employed to characterize the PEO plasma. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the coated materials, and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in a 3.5% NaCl solution were used to determine the corrosion behavior. It was found that the plasma discharge behavior significantly influenced the microstructure and the morphology of the oxide coatings and, hence the corrosion resistance. The corrosion resistance of the coated alloy was increased by changing the current mode from unipolar to bipolar, where the strong plasma discharges had been reduced or eliminated.  相似文献   

20.
A ceramic layer was prepared on the surface of Al2O3f /ZL109 composites by means of micro-arc oxidation (MAO) technique. The surface morphology and phase constituent of the ceramic layer were analyzed using scanning electron microscope and X-ray diffraction. The polarization curves of the composites before and after MAO treatment were measured and analyzed. The results showed that after Al2O3f /ZL109 composites were treated using MAO technique in silicate solution, the ceramic layer formed, and it was composed of Al, Si, and mullite phase. Al and Si came from Al alloy matrix of the composites, and the mullite phase formed in process of MAO. Al2O3 fiber in the composites affects the electric conductivity of the composites, the MAO reaction is promoted, and the ceramic layer forming on the composite material side is slightly thicker than that on the Al alloy side. After Al2O3f /ZL109 composites were treated using MAO technique, the corro- sion resistance of the composites is significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号