首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ZrSiO4对Si3N4结合SiC制品强度和抗氧化性的影响   总被引:1,自引:1,他引:0  
研究了硅酸锆(ZrSiO  相似文献   

2.
本文研究了不同Si3N4含量的Si3N4-SiC复合材料的微观结构对该材料的机械强度的影响,将SiC颗粒与不同含量的Si粉(Si含量的质量百分数分别为15,20,25和40)的混合物压制成试条,在N2气氛下煅烧使Si转化成Si3N4,该复体积密度随着氮化反应中Si3N4含量的增加而增加,复合材料的抗折强度与体积密度未呈现有线性依赖关系,但该性能与材料中大气孔率和微气孔率的变化有密切关系。  相似文献   

3.
顾培芷  肖义新 《硅酸盐学报》1991,19(4):381-384,311
制备了含10vol%,20vol%及30vol%SiC晶须的Si_3N_4基复合材料,对其室温及高温机械强度的测试研究表明,SiC晶须对基体的高温机械性能有明显的增强作用。含20vol%SiC晶须的复合材料1200℃下强度达780MPa,比基体材料提高50%。通过SEM和TEM研究,讨论了SiC晶须增强的原因。  相似文献   

4.
5.
6.
Si3N4结合SiC窑具的研制及应用   总被引:6,自引:1,他引:6  
本文根据试验确定了工艺路线,介绍了氯化烧成机理、原材料的选择及生产工艺对制品的影响,生产出的制品技术指标先进,性能优良。作为更新换代的新型窑具材料具有显著的经济效益和社会效益,有着广泛的使用价值。  相似文献   

7.
8.
硅溶胶浸渍处理对Si3N4结合SiC窑具材料抗氧化性的影响   总被引:1,自引:0,他引:1  
以Si粉、SiC颗粒和细粉为原料,酚醛树脂为暂时结合剂,90 MPa机压成形制得125 mm×25 m×12 mm长方形坯体试样.坯体经干燥、固化后,采用硅溶胶对其进行1~4次真空浸渍处理,而后在氮气气氛的电窑中进行氮化反应烧结制得相应的Si3N4结合SiC试样,研究浸渍处理对材料体积密度、显气孔率、气孔分布、1 250℃抗氧化性的影响.研究表明:硅溶胶浸渍处理可明显提高材料的致密度,降低材料的气孔孔径,明显提高材料的抗氧化性能.随着浸渍处理次数的提高,材料的抗氧化性能增强.综合工艺经济性因素,2次硅溶胶浸渍处理综合效果最佳.  相似文献   

9.
10.
影响Si3N4结合SiC制品烧结的各因素及机制   总被引:2,自引:1,他引:2  
探讨了各因素如SiC尺寸及数量、原料颗粒级配,硅粉添加量,添加剂,氮气纯度及最终反应温度对反应烧结Si3N4结合SiC制品性能的影响及其作用机理。  相似文献   

11.
Al2O3对Si3N4结合SiC材料抗氧化和抗碱侵蚀性的影响   总被引:1,自引:0,他引:1  
研究了添加0~8%Al2 O3对烧成Si3N4结合SiC耐火材料的显微结构、抗氧化和抗碱侵蚀能力的影响。借助XRD、SEM及光学显微镜观察发现:添加Al2 O3通过氮化反应烧结使得材料基质中的Si3N4由纤维状Si3N4向柱状Sialon相转化,显微结构更加致密。4#试样中的Al2O3加入量对提高Si3N4结合SiC耐火材料的抗氧化和抗碱侵蚀性的作用已极其明显。  相似文献   

12.
高炉用优质Si_3N_4结合SiC砖的生产   总被引:1,自引:0,他引:1  
将SiC砂及Si粉合理搭配 ,通入纯度为99 .99%、H2 O含量小于 50× 1 0 - 6的氮气氮化烧成 ,通过一系列成熟而严格的工艺控制 ,其氮化率可达 89% ,产品的体积密度为 2 .69g·cm- 3,耐压强度达到 2 0 4MPa ,高温抗折强度达到 61 .8MPa。  相似文献   

13.
The mechanical properties of pressureless sintering Fe-Si3N4 bonded SiC and Si3N4 bonded SiC with same manufacture process have been compared in this paper.The oxidizing mechanism of Fe-Si3 N4 bonded SiC ceramic matrix composite has been investigated especially through TG-DSC (thermo gravimetric analysis-differential scanning calorimeter) experiment. During oxidation procedure the main reaction is the oxidation of SiC and Si3 N4, SiO2 which form protecting film to prevent further oxidizing. And residual iron in the samples become Fe2O3 and Fe3O4, the oxidation kinetics at 1100 - 1300℃ of Fe-Si3N4 bonded SiC has been studied especially. The weight gain per unit area at initial stage changes according to beeline rule, in the middle according to conic, and in the last oxidation period follows parabola rule,  相似文献   

14.
氮化硅结合碳化硅材料的生产与应用   总被引:4,自引:2,他引:4  
阐述了氮化硅结合碳化硅窑具材料的生产技术、生产工艺流程及使用情况。指出作为现代窑具的替代产品,它具有较好的市场前景  相似文献   

15.
氮化硅铁在Al2O3-SiC-C质铁沟浇注料中的防氧化行为   总被引:1,自引:1,他引:1  
将Al2O3-SiC-C系铁沟浇注料及分别添加8%(质量分数)氮化硅、氮化硅铁的浇注料试样在空气中进行1500℃3 h热处理后,分别对氧化层进行形貌(SEM)及能谱分析(EDS),并结合热力学分析了氮化硅铁的防氧化行为高温氧化气氛下,表面氮化硅铁中的Si3N4首先氧化生成SiO2,构成氧化层的主体;随着铁相材料的氧化,形成的氧化铁不但降低了氧化层的熔点,而且降低了熔体的粘度,增进熔体在材料表面上的润湿性及流动性,形成覆盖于材料表面的氧化层而阻止碳素氧化,使其具有比纯氮化硅更好的防氧化性能;另外,由于氮化硅铁在Al2O3-SiC-C系材料中加入量少,而且试样内部的铁不是以氧化铁形式存在的,故对材料高温使用性能的影响不大.  相似文献   

16.
Si3N4—SiC复相陶瓷增强颗粒尺寸效应   总被引:1,自引:0,他引:1  
本文采用不同颗料尺寸的SiC粉体与Si3N4复合,采有热压烧结工艺制备了Si3N4-SiC复相陶瓷材料。研究了不同SiC颗粒尺寸、含量对复合材料致密化、显微结构和力学性能的影响。结果表明,晶粒尺寸越小强度越高,硬度也越大,但断裂韧性随粒径的变化不大。验证了颗粒复合的均匀分布模型和增强分布模型。  相似文献   

17.
氮化硅铁结合SiC复合材料的氧化行为   总被引:3,自引:0,他引:3  
以工业SiC和硅铁粉为原料,二者的配料组成(质量分数)分别为90%和10%,外加2%的黄糊精为暂时结合剂,采用半干法机压成型后在氮化炉中于1380℃5h氮化烧成制备出氮化硅铁结合SiC复合材料,在变温(常温~1400℃)氧化试验的基础上,分别在1100℃、1200℃和1300℃进行了等温氧化试验,并且分析了1300℃3h氧化后试样的显微结构和相成分。结果表明,氮化硅铁结合SiC复合材料在1100~1300℃范围内的氧化规律为:氧化初期,试样单位面积的质量变化符合直线规律;氧化中期,近似符合二次曲线;氧化后期,符合抛物线规律。与气孔较多的内部相比, 1300℃3h氧化后试样的表面生成了一层较致密的氧化层,检测后认为,表面含有较多的SiO2,在高温下弥合了表面气孔,阻止了试样的进一步氧化。  相似文献   

18.
利用CWCO_2激光来加热SiH_4和C_2H_4、SiH_4和NH_3的混和气体,使SiH_4和C_2H_4、SiH_4和NH_3发生化学反应,从而得到SiC、Si_3N_4超细粉末.本文所制备的SiC、Si_3N_4超细粉末平均粒径分别为15nm、17nm,并具有颗粒大小均匀、呈球状、分散性较好、纯度高等优点.X射线衍射分析表明SiC、Si_3N_4超细粉末呈非晶态结构.  相似文献   

19.
用硅烷和氮气为反应气体,采用ICP等离子体化学气相沉积技术合成氮化硅纳米粉体。用朗缪尔探针诊断了反应室内等离子体参数,得到不同位置、不同功率下等离子体密度的变化规律,等离子体密度随着功率的增大而增大,由于离子鞘层的存在,提供了局部等离子体密度稳定的区域。利用TEM分析了纳米氮化硅的显微形貌,结果表明:纳米氮化硅粉体颗粒为球形,分布于20~40nm。  相似文献   

20.
制备了不同氮化硅含量的氮化硅结合碳化硅材料,研究了其在冰晶石融盐中的腐蚀行为.实验结果表明,低Si3N4含量(13%)的Si3N4-SiC材料具有良好的抗冰晶石融盐腐蚀的性能,使其做为铝电解槽内衬材料成为可能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号