首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microwave dielectric properties of Ca1- x Sm2 x /3TiO3 ceramics were investigated as a function of the amount of Sm3+ substitution (0.0 ≤ x ≤ 0.8). The structure was changed from orthorhombic perovskite at x = 0.0 to tetragonal at x = 0.6. As the calcium vacancy concentration increased with increased Sm3+ substitution, the unloaded Q value (similar/congruent 1/tan delta) increased up to the solid-solution limit at x = 0.6 and then decreased because of formation of the secondary phase Sm2Ti2O7. The dielectric constant decreased with increased Sm3+ substitution. The effects of Sm3+ substitution on dielectric loss and dielectric constant of the specimens were analyzed by the infrared reflectivity spectra in the range 50–4000 cm−1, which were evaluated using the Kramers-Kronig analysis and classical oscillator model. The correlations among dielectric constant, dielectric loss, and dispersion parameters were studied.  相似文献   

2.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

3.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

4.
The microwave dielectric properties of CaTi1-χ(Al1/2Ta1/2)cHO3 solid solutions (0.3 ≤χ≤ 0.5) have been investigated. The ceramic samples had perovskite structures similar to CaTiO3. The partial substitution of Ti4+ by a coupled Al3+/Tas+ permitted improvement of the quality factor Q . The dielectric constant (τr) and temperature coefficient of resonant frequency (τr) decrease rapidly with an increase of χ. A new high-quality microwave dielectric material was found at χ= 0.46 with σr= 46.5, Q f = 27300 GHz, and πf= 0 ppm/°C. The relationship between microstructures and dielectric properties is presented.  相似文献   

5.
The phase relations and the mechanism of solid-state synthesis for the Na0.5Bi0.5TiO3–Li3 x La(2/3)− x (1/3)−2 x TiO3 system were investigated using X-ray powder diffraction, scanning electron microscopy, and thermal analysis. The study revealed that the extent of the homogeneity range—which is related to the A-site substitution between (Na0.5Bi0.5)2+ and (Li3 x La(2/3)− x (1/3)−2 x )2+ pseudo cations of a perovskite structure—depends strongly on the ordering of the (Li3 x La(2/3)− x (1/3)−2 x )2+ species. The solid-state reaction of the compounds in the homogeneity range is completed only after multiple high-temperature firings. However, the system is also subjected to a slow thermal decomposition; this is particularly so for the compounds with a high × value and an increased Li3 x La(2/3)− x (1/3)−2 x TiO3 concentration.  相似文献   

6.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

7.
Microwave dielectric properties of (1− x )(Na1/2Nd1/2)TiO3(NNT)− x La(Mg1/2Ti1/2)O3(LMT) system have been investigated with focus on structural ordering and far IR reflectivity spectra. A single perovskite phase was found to exist with various superlattice reflections over the entire compositional range. 1:1 ordering observed in the (111) reflection of X-ray diffraction patterns was found to progress significantly in the specimens above x =0.8. The ordering characteristics that presumably related to B-site Mg/Ti ordering were assumed to affect favorably the quality factor at microwave frequencies. The increase of the quality factor also could be explained in terms of the decrease of lattice anharmonicity with LMT by analysis of far IR reflectivity spectra. As expected from the values of pure NNT and LMT, the dielectric constant and the temperature coefficient of frequency tended to gradually decrease with increasing LMT content.  相似文献   

8.
Powder X-ray diffractometry (XRD) and 151Eu Mössbauer spectroscopy were performed for samples prepared in the temperature range 1500–1500°C for the hafnia–europia (HfO2–Eu2O3) system Eu x Hf1− x O2− x /2(0 ≤ x ≤ 1.0). The XRD results showed that two types of solid solution phases formed in the composition range 0.25 ≤ x ≤ 0.725: an ordered pyrochlore-type phase in the middle-composition range (0.45 < x < 0.575) and a disordered fluorite-type phase, enveloping the pyrochlore-type phase on both sides, in the composition ranges 0.25 ≤ x ≤ 0.40 and 0.60 ≤ x ≤ 0.725. 151Eu Mössbauer spectroscopy sensitively probes local environmental changes around trivalent europium (Eu3+) caused by the formation of these solid solution phases. In addition to the broad, single Mössbauer spectra observed in this study for the Eu3+, the values of isomer shift (IS) exhibited a pronounced minimum in the neighborhood of the stoichiometric pyrochlore phase ( x ≈ 0.5). Such IS behavior of Eu3+ was interpreted based on the XRD crystallographic information that the ordered pyrochlore phase has a longer (in fact, the longest) average Eu–O bond length than those of the disordered fluorite phases on both sides or the monoclinic (and C-type) Eu2O3at x = 1.0.  相似文献   

9.
Zn-substituted CaCu3Ti4O12 ceramics were synthesized by solid-state sintering. Their microstructures and dielectric properties were investigated. Ca(Cu1− x Zn x )3Ti4O12 single-phase structures were obtained up to x =0.1, and the Cu+/Cu2+ and Ti3+/Ti4+ mixed-valent structure was enhanced with increasing Zn substitution. The giant dielectric response was significantly enhanced by Zn substitution. The dielectric constant increased with increasing x , and a giant dielectric constant plateau as high as ∼9 × 104 was achieved for x =0.1 at 10 kHz, while that for x =0 was ∼3 × 104. The enhanced giant dielectric response was profoundly concerned with the modified mixed-valent structure.  相似文献   

10.
The structure and dielectric properties of (1− x )Pb(Sc2/3W1/3)O3–( x )Pb(Zr/Ti)O3 ceramics have been investigated over a full substitution range. All compositions with x < 0.5 adopt a cubic perovskite structure; however, for x ≤ 0.25 a doubled cell results from a 1:1 ordered distribution of the B-site cations. The structural order in Pb(Sc2/3W1/3)O3 (PSW) can be described by a random-site model with one cation site occupied by Sc3+ and the other by a random distribution of (Sc1/33+W2/36+). The ordering is destabilized in solid solutions of PSW with PbZrO3 (PSW–PZ), but stabilized by PbTiO3 in the (1− x )PSW–( x )PT system. The changes in order are accompanied by alterations in the dielectric response of the two systems. For PSW–PZ the temperature of the permittivity maximum ( T ɛ,max) increases linearly with x ; however, for PSW–PT T ɛ,max decreases in the ordered region (up to x = 0.25) and then increases rapidly as the order is lost. Similar effects were produced by modifying the degree of order of (0.75)PSW–(0.25)PT; when the order parameter was reduced from ∼1.0 to ∼0.65, T ɛ,max increased by more than 60°C.  相似文献   

11.
Ceramic samples with the nominal composition (1− x ) BaTiO3+ x Ba3Ti2YO8.5 ( x =0−0.535) were prepared by the mixed oxide method. X-ray diffraction (XRD) analysis shows that the materials are of single phase with a cubic symmetry as x ≤0.16. The compositions of the solid solutions ( x ≤0.16) can be expressed equivalently as Ba(Ti1− y Y y )O3−δ ( y ≤0.122, y = x /(1+2 x )). For x >0.16, the materials are diphasic composites consisting of Ba(Ti1− y Y y )O3 ( y =0.122) and Ba3Ti2YO8.5. The microstructure observation by scanning electron microscopy supports the XRD result. The dielectric behavior and phase transitions of the solid solutions ( x ≤0.16) vary with different Y concentrations. The dielectric constant of the composites ( x >0.16) follows approximately the Lichteneker relation in a wide temperature range.  相似文献   

12.
PbTiO3-doped sodium bismuth titanate (Na1/2Bi1/2)1− x Pb x TiO3 of perovskite structure is one of the best-known piezoelectrics/ferroelectrics. However, it has not been properly investigated in any thin-film forms. In this study, the dielectric properties of (Na1/2Bi1/2)0.87Pb0.13TiO3 thin films synthesized via a sol–gel route were investigated. They exhibit a strong frequency dispersion of the dielectric permittivity at relatively high frequencies, which is shifted to lower frequencies with increasing temperature. The electrical behavior can be fitted using Jonscher's universal law for dielectric relaxation. The peculiar dielectric behaviors observed can be ascribed to the coexistence of two different dielectric phases in the films, which is believed to be associated with the growth of the local Pb2+TiO3 nanoclusters upon substitution of Pb2+ for Na+/Bi3+ in the (Na1/2Bi1/2)1− x Pb x TiO3 films.  相似文献   

13.
Dielectric ceramics in the system (Zn1− x Co x )TiO3 ( x = 0–1) were synthesized by the solid-state reaction route. The phase distribution, microstructure, and dielectric properties were characterized by using powder X-ray diffraction analysis, electron microscopy, and microwave measurement techniques. Three phase composition regions were identified in the specimens sintered at 1150°C; [spinel + rutile] at 0 ≤ x ≤ 0.5, [spinel + ilmenite + rutile] at 0.5 < x ≤ 0.7, and [ilmenite] phase at 0.7 < x ≤ 1. For the 0 ≤ x ≤ 0.5 region, the amount of Ti-rich precipitates incorporated into the spinel phase decreased with the Co content at 0 ≤ x ≤ 0.5, with a concomitant increase of the rutile phase. The ilmenite phase appeared for high Co content. The microwave dielectric properties depended on the phase composition and volume according to the three phase regions, where the relative amount of rutile to the spinel or ilmenite determined the dielectric properties. The dielectric constant as a function of Co addition was modeled with a Maxwell mixing rule. An optimum phase distribution was determined in this system with dielectric constant of 25, a Q * f 70 000 GHz, and a low temperature coefficient of the resonant frequency.  相似文献   

14.
Tin (Sn) substitution for titanium (Ti) was investigated in Ba6−3 x Nd8+2 x Ti18O54 ( x =1/2, 2/3, and 3/4) ceramics. A small amount ( z <0.1) of Sn substitution resulted in Ba6−3 x Nd8+2 x (Ti1− z Sn z )18O54 solid solutions, and some secondary phases were observed with increasing Sn content. A small amount of Sn substitution improved the Q f value significantly, while, due to the formation of secondary phases, the Q f value degraded sharply for larger Sn content. The relative dielectric constant (ɛr) decreased with increasing Sn-content, while the temperature coefficient of resonant frequency (τf) generally decreased, although an obvious fluctuation was observed for x =3/4.  相似文献   

15.
Both 1:2 and 1:1 ordered structures form in the perovskite solid solutions of La-substituted BMT Ba1− x La x (Mg(1+ x )/3Ta(2− x )/3)O3, sintered at 1600°C. The 1:2 ordered structure exists in the composition range 0.0 ≤ x ≤ 0.12, while that of 1:1 ordered structure exists in a wider composition range 0.04 ≤ x ≤ 1.0. Two ordered phases coexist in 0.04 ≤ x ≤ 0.12. High-resolution micrographs indicate that 1:2 and 1:1 ordered domains coexist in one grain. The ordering parameter of 1:2 phase decreases with x , yet that of 1:1 phase increases with x . Both increase with soak time. Variations in ordering are discussed in terms of cation occupancy and crystal chemistry. The quality factor increases with x , reaches a maximum, then decreases with x . The dielectric constant increases with x first, and levels off.  相似文献   

16.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

17.
In the course of searching environmental friendly lead-free relaxor ferroelectrics a complete phase diagram of barium zirconate titanate, Ba(Zr x Ti1− x )O3 system with compositions 0.00≤ x ≤1.00 has been developed based on their dielectric behavior. It has been shown that BaZr x Ti1− x O3 system depending on the composition, successively depicts the properties extending from simple dielectric (pure BaZrO3) to polar cluster dielectric, relaxor ferroelectric, second order like diffuse phase transition, ferroelectric with pinched phase transitions and then to a proper ferroelectric (pure BaTiO3). A comprehensive structure–property correlation of BaZr x Ti1− x O3 ceramics has been studied to understand the various ferroelectric phenomena in the whole phase diagram.  相似文献   

18.
Ilmenite-type (Zn1− x Cd x )TiO3 (0≤ x ≤0.15 and 0.8≤ x ≤1.0) was synthesized by a modified sol–gel route including the Pechini process via two-step heat treatments. The thermal stability of (Zn1− x Cd x )TiO3 depended on the amount of cadmium content. The as-synthesized (Zn1− x Cd x )TiO3 (0≤ x ≤0.15 and 0.8≤ x ≤1.0) showed higher thermal stability than that of ZnTiO3. The variation of the dielectric constant of all synthesized (Zn1− x Cd x )TiO3 samples for all measurement frequencies showed a similar tendency. The dielectric constant of each (Zn1− x Cd x )TiO3 sample decreased first with increasing frequencies and then increased slightly when the frequency was up to 107 Hz. Moreover, the dielectric loss tangent of all synthesized (Zn1− x Cd x )TiO3 samples for all measurement frequencies also changed in similar patterns. The dielectric loss tangent decreased with increasing measurement frequencies. The microwave dielectric properties of (Zn1− x Cd x )TiO3 were changed with the cadmium doping content in the range of microwave frequency.  相似文献   

19.
Tin (Sn) substitution into the B-site and Nd/Sn cosubstitution into the A- and B-sites were investigated in a Ba 6−3 x Sm8+2 x Ti18O54solid solution ( x = 2/3). A small amount of tin substitution for titanium improved the temperature coefficient of resonant frequency (τf) but led to a decrease of the relative dielectric constant (ɛ) and the quality factor ( Qf ). The Ba6−3 x Sm8+2 x (Ti1− z Snz)18O54-based tungsten-bronze phase became unstable for compositions with a tin content of ≥10 mol%, where BaSm2O4and Sm2(Sn,Ti)2O7appeared, and finally, these phases became the major phases. On the other hand, Nd/Sn cosubstitution led to a good combination of high ɛ, high Qf , and near-zero τf. Excellent microwave dielectric properties were achieved in Ba6−3 x (Sm1− y Nd y )8+2 x (Ti1− z Sn z )18O54ceramics with y = 0.8 and z = 0.05 sintered at 1360°C for 3 h: ɛ= 82, Qf = 10 000 GHz, and calculated τf=+17 ppm/°C. The tolerance factor and electronegativity difference exhibited important effects on the microwave dielectric properties, especially the Qf value. A large tolerance factor and high electronegativity difference generally led to a higher Qf value.  相似文献   

20.
Piezoelectric ceramics Na1− x Ba x Nb1− x Ti x O3 with low BaTiO3 concentrations x have been prepared by the solid-state reaction method, and their ferroelectric and piezoelectric properties have been studied. The ceramics are classic ferroelectrics when x ≤0.10, and the ferroelectric–paraelectric phase transition becomes diffusive when x ≥0.15. A low doping level of BaTiO3 changes the NaNbO3 ceramics from antiferroelectric to ferroelectric. With the increase in BaTiO3 doping level, the Curie temperature of ceramics decreases linearly and the remnant polarization and coercive field also decrease, while their dielectric constant increases. Na0.9Ba0.1Nb0.9Ti0.1O3 ceramics show the largest piezoelectric constant d 33 (147 pC/N) and good sinterability, suggesting that it is a good candidate for lead-free piezoelectric ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号