首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined cochlear filter response properties derived from f1- and f2-sweep phase delay difference measures in 60 normal hearing human adults. Seven different f2 frequencies ranging from 1.1 to 9.2 kHz were presented (f2/f1 ratios of 1.1-1.3). F2 intensity level was varied in 5 dB steps from 30 to 50 dB SPL (the level of f1 was 15 dB above the level of f2). DPOAE delay estimates in a f2-sweep paradigm are longer than in a f1-sweep paradigm at the same frequency and intensity. This indicates that the f2-sweep DPOAE phase delay is composed of a greater proportion of the filter response time at the site of DPOAE generation than the f1-sweep delay. This proportion was isolated by subtracting f1-sweep DPOAE delays from f2-sweep delays at similar f2 frequencies and intensities. Under the assumption of linearity and minimum phase the impulse response of the filter at each f2 stimulus level was calculated from the mean phase delay difference. Frequency response properties were calculated by Fourier transformation of the impulse response at each f2 frequency and intensity. High frequency low intensity impulse responses had longer response times and narrower frequency bandwidths than low frequency high intensity responses. The Q10dB values of DPOAE derived tuning curves ranged from 2.4 (1.5 kHz) to 7.3 (8.5 kHz).  相似文献   

2.
The levels of distortion product otoacoustic emissions (DPOAEs) were measured in a strain of hearing-impaired mutant mice (CD1) at various stages of outer hair cell impairment and compared to those of a control inbred strain (CBA/J). Parallel measurements of cochlear potentials and auditory brainstem evoked responses (ABRs) were performed and surface preparations of organs of Corti were observed using phalloidin staining of filamentous actin. Comparison of DPOAEs (elicited by stimulus levels of 60 and 70 dB SPL) with standard functional tests allowed the categorization of CD1 ears into two groups on the basis of the presence or absence of DPOAE, which corresponded to mean ABR thresholds greater or less than 40 dB nHL respectively. When adopting ABR threshold as the gold standard, this procedure yielded rates of false-positives and -negatives ranging from 5 to 16%. However, individual predictions of electrophysiological function from DPOAE levels were not accurate, owing to their large variance, and attempts to optimize stimulus levels did not reduce this variance. In contrast, the profiles of DPOAE level vs. f2 exhibited large correlations with ABR threshold profiles as a function of f2. It was also noteworthy that the mean levels of DPOAEs in CD1 mice recorded in frequency intervals with normal ABR thresholds were significantly smaller than those of CBA/J mice. Although hearing loss was revealed early both by DPOAEs and by other functional tests, surface preparations often remained normal until about 3-4 months of age.  相似文献   

3.
An innovative acoustic noise canceling method using adaptive Wiener filtering (AWF) was developed for improved acquisition of distortion product otoacoustic emissions (DPOAEs). The system used one microphone placed in the test ear for the primary signal. Noise reference signals were obtained from three different sources: (a) pre-stimulus response from the test ear microphone, (b) post-stimulus response from a microphone placed near the head of the subject and (c) post-stimulus response obtained from a microphone placed in the subject's nontest ear. In order to improve spectral estimation, block averaging of a different number of single sweep responses was used. DPOAE data were obtained from 11 ears of healthy newborns in a well-baby nursery of a hospital under typical noise conditions. Simultaneously obtained recordings from all three microphones were digitized, stored and processed off-line to evaluate the effects of AWF with respect to DPOAE detection and signal-to-noise ratio (SNR) improvement. Results show that compared to standard DPOAE processing, AWF improved signal detection and improved SNR.  相似文献   

4.
Evidence of the compressive growth of basilar-membrane displacement can be seen in distortion-product otoacoustic emission (DPOAE) levels measured as a function of stimulus level. When the levels of the two stimulus tones (f1 and f2) are related by the formula L1 = 39 dB + 0.4 x L2 [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] the shape of the function relating DPOAE level to L2 is similar (up to an L2 of 70 dB SPL) to the classic Fletcher and Munson [J. Acoust. Soc. Am. 9, 1-10 (1933)] loudness function when plotted on a logarithmic scale. Explicit estimates of compression have been derived based on recent DPOAE measurements from the laboratory. If DPOAE growth rate is defined as the slope of the DPOAE I/O function (in dB/dB), then a cogent definition of compression is the reciprocal of the growth rate. In humans with normal hearing, compression varies from about 1 at threshold to about 4 at 70 dB SPL. With hearing loss, compression is still about 1 at threshold, but grows more slowly above threshold. Median DPOAE I/O data from ears with normal hearing, mild loss, and moderate loss are each well fit by log functions. When the I/O function is logarithmic, then the corresponding compression is a linear function of stimulus level. Evidence of cochlear compression also exists in DPOAE suppression tuning curves, which indicate the level of a third stimulus tone (f3) that reduces DPOAE level by 3 dB. All three stimulus tones generate compressive growth within the cochlea; however, only the relative compression (RC) of the primary and suppressor responses is observable in DPOAE suppression data. An RC value of 1 indicates that the cochlear responses to the primary and suppressor components grow at the same rate. In normal ears, RC rises to 4, when f3 is an octave below f2. The similarities between DPOAE and loudness compression estimates suggest the possibility of predicting loudness growth from DPOAEs; however, intersubject variability makes such predictions difficult at this time.  相似文献   

5.
Distortion product otoacoustic emissions (DPOAEs) were evaluated in 494 normal and 506 cochlear-impaired human ears, to determine whether DPOAEs depend on factors such as background noise, the shape of the pure tone audiogram, sex and aging, and whether a DPOAE test can perform well in distinguishing normal-hearing from hearing-impaired ears. The amplitudes of DPOAEs were measured at the frequency of 2f1-f2 (f1 < f2, f2/f1 = 1.22, f2 at 1, 2 and 4 kHz) using as stimuli two pure tones at level of 70 dB from an ILO92 Otoacoustic Emission Analyzer. The correlation coefficients between the DPOAE level and the auditory threshold decreased as the background noise levels at 1 kHz and 2 kHz increased. Therefore, it appeared that ears with large background noise levels would be inadequate for the study of DPOAEs predicting the hearing state. The sensitivity (normal-hearing ears identified as normal hearing) and the specificity (hearing-impaired ears identified as hearing impaired) at the equal-sensitivity-specificity condition were 80.7-86.7% at 1, 2 and 4 kHz, and the areas under the receiver operating characteristic (ROC) curves, which were used to estimate the test performance, were 0.88 for 1 kHz, 0.91 for 2 kHz and 0.92 for 4 kHz. Since these results suggest that a DPOAE can be used as a reliable technique for objective auditory tests, it is thought that actual values (DPOAE level: 4.3 dB at 1 kHz, 5.0 dB at 2 kHz and 2.9 dB at 4 kHz) of false-positive (hearing-impaired ears identified as normal hearing) rates corresponding to 5% can be used in clinical evaluation to separate normal hearing from hearing-impaired ears. There was, however, a significant age effect at 4 kHz on DPOAEs in the ears with the same pure tone hearing thresholds, and the areas of the ROC curves in subjects ranging from 10 to 29 years old were larger than in subjects over 50 years (1 kHz: 0.88 to 0.94 versus 0.83 to 0.84, 2 kHz: 0.95 versus 0.89, 4 kHz: 0.95 to 0.96 versus 0.88 to 0.89). Therefore, it is thought that age-adjusted norms may be necessary for the accurate interpretation of DPOAE results.  相似文献   

6.
Reactive oxygen species, which are cytotoxic to living tissues, are thought to be partly responsible for noise-induced hearing loss. In this study R-phenylisopropyladenosine (R-PIA), a stable non-hydrolyzable adenosine analogue which has been found effective in upregulating antioxidant enzyme activity levels, was topologically applied to the round window of the right ears of chinchillas. Physiological saline was applied to the round window of the left ears (control). The animals were then exposed to a 4 kHz octave band noise at 105 dB SPL for 4 h. Inferior colliculus evoked potential thresholds and distortion product otoacoustic emissions (DPOAE) were measured and hair cell damage was documented. The mean threshold shifts immediately after the noise exposure were 70-90 dB at frequencies between 2 and 16 kHz. There were no significant differences in threshold shifts at this point between the R-PIA-treated and control ears. By 4 days after noise exposure, however, the R-PIA-treated ears showed 20-30 dB more recovery than saline-treated ears at frequencies between 4 and 16 kHz. More importantly, threshold measurements made 20 days after noise exposure showed 10-15 dB less permanent threshold shifts in R-PIA-treated ears. The amplitudes of DPOAE also recovered to a greater extent and outer hair cell losses were less severe in the R-PIA-treated ears. The results suggest that administration of R-PIA facilitates the recovery process of the outer hair cell after noise exposure.  相似文献   

7.
This study varied stimulus frequency and recorded distortion product otoacoustic emissions (DPOAEs) in human newborns and adults. Because of outer and middle ear acoustics, the same auditory input resulted in higher newborn stimulus sound pressure levels across a broad frequency range in the occluded outer ear canal. Noise levels in the canal were 5-15 dB lower for adults at frequencies less than about 3 kHz. The 2 f1-f2 DPOAE was the most reliably recorded DPOAE except at the lowest frequencies assessed. At the lowest frequencies the 2 f2-f1 DPOAE was more frequently recorded than any other DPOAE. There were no striking developmental differences in the kinds of DPOAEs that were recorded. The amplitudes of consecutively recorded 2 f1-f2 DPOAEs were generally within 1.5 dB of each other for all age groups (slightly better reproducibility for adults than newborns). The phases of consecutively recorded 2 f1-f2 DPOAEs were generally within 15 degrees of each other (often less than 10 and 5 degrees for newborns and adults respectively). At the highest frequencies assessed (f2 = 4.2-9.9 kHz) all subjects had similar amplitude 2 f1-f2 DPOAEs. At lower frequencies adult 2 f1-f2 amplitudes were significantly less than those of newborns. At the lowest frequencies reliably assessed (f2 = 1.5-2.1 kHz) term newborns had significantly larger 2 f1-f2 DPOAEs than preterm newborns. Newborn and adult 2 f1-f2 DPOAE amplitude X f2/f1, functions were quite similar although there were reliable differences. Age related differences in the outer and middle ears may explain some of the differences in DPOAEs that were observed.  相似文献   

8.
The influence of contralateral white noise with levels of 50 and 60 dBnHL on the amplitude of distortion-product otoacoustic emissions (DPOAE) was measured. Thirty ears of normally hearing adults (17 women, 13 men, mean age 26.5 +/- 5.3 years) were examined. Two representative DPOAE frequencies 2f1-f2 = 1342 Hz and 6341 Hz were compared. The lower DPOAE frequency was placed in the frequency region where middle-ear pressure has a strong influence on DPOAE amplitudes, the higher DPOAE frequency respectively in the region where lesser influence is exerted by middle-ear pressure. During the application of contralateral white noise a statistically significant total of 85% of DPOAE amplitudes was reduced, although there was some variation in the individual behaviour of DPOAE amplitudes. In general the higher DPOAE frequency (6341 Hz) was reduced distinctly less than the lower DPOAE frequency (1342 Hz). The reaction of DPOAE amplitude depended closely on the time course of the contralateral stimulus and amplitude reductions were present over 10 minutes without adaptation or fatigue. It is not possible to differentiate between middle-ear or inner-ear mediate effects but the middle ear is at least involved. Based on the presence of those DPOAE amplitude reductions over ten minutes without adaptation or fatigue and the fact that lower frequencies are influenced much more than higher frequencies a synergistic effect--middle-ear and efferent mediated--is suggested.  相似文献   

9.
Distortion-product otoacoustic emissions (DPOAEs) have been shown to be ideally sensitive to interruptions of the cochlear blood flow. However, a 15- to 30-second latency typically occurs between cessation of circulation and measurable DPOAE level changes. DPOAEs can also be characterized by phase measures. The aim of the present study was to determine in 10 rabbits the effects on DPOAE phase of repetitively compressing the internal auditory artery. In contrast to the delays measured by DPOAE level, phase changes were detected 1 to 5 seconds after internal auditory artery compression. These data suggest that the essentially "real time" monitoring of cochlear function with DPOAE phase can be used to ensure hearing preservation during surgery involving the porus acousticus and skull base.  相似文献   

10.
The effects of primary tone frequency ratio (f2/f1 ratio) and relative level (L2/L1) on the amplitude of the cubic difference tone (CDT: 2f1-f2) distortion product otoacoustic emissions (DPOAEs) were investigated in adult White Leghorn chickens (Gallus domesticus). In experiment 1, 9 f2/f1 ratios ranging from 1.05 to 1.8 were investigated. Measurements were obtained from both ears of 4 chickens at 7 f1 frequencies ranging from 0.8 to 4.0 kHz. The primary tones were equal in level, and varied from 20 to 80 dB SPL. The mean CDT amplitude increased with increasing primary tone level once the measurement noise floor was exceeded. The input/ output functions assumed one of two shapes: one in which there was a systematic increase in DPOAE amplitude with increasing primary tone level, and the other in which there was a plateau in the input/output function near 65-70 dB SPL. At the highest primary tone level (80 dB SPL), there was a decrease in the CDT amplitude with increasing f2/f1 ratio. At high primary tone levels, the f2/f1 ratio which produced the largest CDT was 1.05 or 1.1, while at lower primary tone levels the largest CDT occurred at f2/f1 ratios of 1.2-1.3. In experiment 2, L2 was held constant at 70 dB SPL, and L1 varied from 50 to 80 dB SPL. For f1 frequencies of 0.8 and 3.2 kHz, there was an increase in the CDT amplitude with increasing L1, followed by an asymptote at higher levels. In contrast, for 1.6 and 2.0 kHz f1 frequencies, the amplitude increased, plateaued and then increased again at higher levels. Informal measurements suggest that spontaneous otoacoustic emissions (SOAEs) are rarely seen in chickens. However, a reliable SOAE was observed in 1 chicken, which could be suppressed by external sounds and anoxia.  相似文献   

11.
Suppression of the 2f1-f2 distortion product otoacoustic emission (DPOAE) provides an effective paradigm for the study of functional cochlear maturation in humans. DPOAE iso-suppression tuning curves (STCs) represent some aspect of peripheral filtering, probably related to the boundaries of distortion generation. Studies conducted thus far suggest that the cochlear tuning assessed by this technique is adult-like in humans by term birth (Abdala et al., Hear. Res. 98 (1996) 38-53; Abdala and Sininger, Ear Hear. 17 (1996) 374-385). However, there have been no studies of cochlear tuning in premature human neonates. DPOAE STCs and suppression growth functions were measured from 14 normal-hearing adults, 33 term and 85 premature neonates to investigate the developmental time course of cochlear frequency resolution and non-linearity. Premature neonates showed non-adult-like DPOAE suppression at f2 of 1500 and 6000 Hz: (1) STCs were narrower in width (Q10) and steeper in slope on the low-frequency flank of the tuning curve; (2) suppressor tones lower in frequency than f2 produced atypically shallow growth of DPOAE suppression. The influence of immature conductive pathways cannot be entirely ruled out as a factor contributing to these results. However, findings may indicate that an immaturity exists in cochlear frequency resolution and non-linearity just prior to term birth. The bases of this immaturity are hypothesized to be outer hair cell in origin.  相似文献   

12.
Cerebral blood flow can be measured in neonates by near infra-red spectrophotometry. The tracer is oxyhaemoglobin. The purpose of the study is to compare the test-retest variability of two previously proposed methods (UCH and COP) of analysis, and to investigate the influence of sampling rates, smoothing and integration periods. Under clinical conditions good measurements are often difficult to obtain. Therefore, a second goal is to find ways of determining the quality of individual measurements. 380 cerebral blood flow measurements from 69 infants are analysed. The data set is optimised statistically for the lowest test-retest variability and the following results are obtained. The test-retest variability of measurements at 2 s sampling time data is considerably worse than at 0.5 s sampling time. Smoothing does not change the test retest variability. A 6 s integration period gives higher values and higher test-retest variability than an 8 s integration period. By applying the suggested criteria, a test-retest variability of 17% is achieved, if 50% of the measurements are rejected. The mean cerebral blood flow is 12.2 ml (100 g)-1 min-1 for the UCH method and 9.7 ml [corrected] (100 g)-1 min-1 for the COP method. The test-retest variability of both methods is comparable for 0.5 s sampling time. For 2 s sampling time the method proposed by Skov et al. is significantly better. These test retest variabilities represent maximum values, part of the observed variability may be due to physiological changes of unknown magnitude.  相似文献   

13.
The aim of this study was to evaluate the reduction in 2f1-f2 distortion product otoacoustic emission (DPOAE) amplitude resulting from prolonged noise exposures. A group of five chinchillas was exposed continuously to an octave-band noise centered at 4.0 kHz for a total of 42 days, 6 days at each of seven exposure levels. Exposure level increased in 8-dB steps from 48 to 96 dB SPL. DPOAE input-output (I/O) functions were measured at octave intervals over a range of primary tone f2 frequencies between 1.2 and 9.6 kHz. Measurements were obtained (1) pre-exposure, (2) during days 3-6 of each 6-day exposure, and (3) 4 weeks after the final exposure. Continuous noise exposure caused a reduction in DPOAE amplitude that was greatest at f2 frequencies within and above (3.4-6.8 kHz) the octave-band noise exposure. For these f2 frequencies, DPOAE amplitudes decreased as exposure level increased up to approximately 72-80 dB SPL; higher exposure levels failed to cause any further reduction in DPOAE amplitude. The noise level at which DPOAE amplitude began to decrease was approximately 50 dB SPL. Above this critical level, DPOAE amplitude decreased 1.3 dB for every dB increase in noise level up to approximately 75 dB SPL.  相似文献   

14.
PURPOSE: The authors evaluated the reliability of the coefficients of the (1) amplitude/duration and (2) amplitude/peak velocity relationships of the mean precision values and the mean latency values (saccadic eye movements) and the coefficients of the target velocity/gain relationship (smooth pursuit eye movements). They computed test-retest maximum variability limits for these parameters. METHODS: After a 1-week interval, saccadic and smooth pursuit eye movements were recorded twice from 20 healthy subjects; 12 of these subjects underwent a third recording session. The estimate of the intraclass coefficient of reliability, R, was adopted to evaluate the reliability of eye movement quantitative analysis. RESULTS: The data demonstrated that the reliability was fairly good for the amplitude/peak velocity relationship, was good for the precision, and was excellent for the amplitude/duration, the target velocity/gain relationships, and the latency. CONCLUSIONS: Quantitative analysis of both saccadic and smooth pursuit eye movements is reliable. One statistic used to estimate reliability, ie, the within-subjects mean square value, also enables the determination of test-retest normal variability values for both the variances and the differences of measurements.  相似文献   

15.
Measurement of distortion-product otoacoustic emissions (DPOAE) is widely accepted as one of the most valuable tools for evaluating the frequency of specific cochlear pathology. Previous studies have revealed that distortion-product levels in the ear canal are definitely correlated with degree of damage in the cochlea. However, there seem to be no clear data of help in predicting the distribution and grade of damage in the cochlea quantitatively on the basis of the results of this non-invasive test. The present study is designed to assess correlations between degree of outer hair cell (OHC) damage by a potent ototoxic antibiotic, kanamycin, and DPOAE levels at the characteristic frequency at the site. Guinea pigs were used after daily intramuscular administration of kanamycin for 7 or 10 days. DPOAE levels were measured using a system (CUBDIS: Etymotic Research) with 78 frequency combinations of iso-intensity primaries from 0.5kHz to 16kHz of f2. The frequency ratio (f2/f1) was set at 1.2. Distortion-product level plots versus f2 (DP-grams) were constructed. The integrity of the OHC system was evaluated histologically by the succinic dehydrogenase (SDH) method under a light microscope. Cochleograms were constructed by calculating percentages of intact OHCs along the basilar membrane in 1-mm blocks. The DP-grams and the histopathological cochleograms showed essentially identical patterns in the kanamycin-damaged guinea pig cochlea. The results suggest that: 1) The generation of DPOAE requires functioning OHCs. 2) DPOAE measurement provides information allowing prediction of OHC damage distribution in the cochlea without histological investigations. 3) Careful setting of primary levels and other parameters is necessary to reliably predict the pathology. 4) Attempts to detect of minimal OHC damage could fail. 5) DPOAE seem very useful for monitoring cochlear function in clinically.  相似文献   

16.
Distortion-product otoacoustic emissions (DPOAEs) are still undergoing evaluation for clinical use. Although the effects of ageing on otoacoustic emissions have been studied quite extensively in the past, DPOAE response-growth or input-output (I-O) measures, which are well suited as an objective method for monitoring cochlear function at specific frequencies, have been less thoroughly examined. The aim of the present study was to assess the 2f1-f2 DPOAEs in a clinical setting in order to examine the response of 20 normally hearing middle-aged adults and to compare the results with those of 20 people of the same age with ears of sensorineural high-frequency hearing loss (HL). The experiment consisted of two stages. First, the DPOAE-gram was recorded in 1-4-octave steps at a stimulus level of 70 dB SPL over a frequency range of the f2 primary tone which extended from 1.001 to 6.299 kHz. Secondly, in order to elicit DPOAE I-O functions, the two primary stimuli were presented at equilevel intensities ranging from 20 to 71 dB SPL. The stimulus-level step size was 3 dB. The I-O functions were recorded at five separate DPOAE frequencies, with the f2 frequency most closely related to the clinical audiogram (f2 = 1.0, 1.5, 2.0, 4.0 and 6.0 kHz). Two clearly separated portions in the form of the I-O function for normally hearing ears were found. The first portion, in response to primary levels of 60 dB SPL and below, showed a plateau (saturating) behaviour. If primary levels exceeded 60 dB SPL, I-O functions became more linear. The attenuation of the saturation portion of the I-O function in ears with high-frequency HL across the frequency-test range is difficult to explain because elevated behavioural thresholds were observed only for frequencies > 1.5 kHz. Thus, the more linear I-Os associated with the hearing-loss frequencies may indicate deficiencies in the active properties of outer hair cells (OHCs), whereas those for I-Os < 1.5 kHz, where hearing was normal, may indicate a beginning of damage to active OHC micromechanical processes prior to their clinical manifestation. DPOAE recordings from people with high-frequency HL, possibly age-related, supplement recordings of TEOAEs and give complementary information on degenerative changes in the outer hair-cells. DPOAE I-O functions may reveal discrete pathological alterations both in the active cochlear signal processing and in the passive mechanisms of the cochlea prior to their detection by clinical audiometric tests.  相似文献   

17.
To test the hypothesis of temporal modifications of cochlear responses when medial efferents are activated, otoacoustic emission latencies were estimated in 16 normal human subjects, in the presence and absence of a contralateral broadband noise, using measurements of the phase of the 2f1-f2 distortion product (group latency method). Significant decrease in the latency of lower frequency (0.8-2.7 kHz) emissions was found in the presence of increasing levels of contralateral sound, and this effect disappeared when the primary-tone levels increased to 60 dB SPL. To ensure that effects were not attributable to mechanisms involving middle ear structures, susceptible to activation by contralateral sound, latency measures were performed in seven subjects whose efferents were severed during a vestibular neurotomy and in two subjects with paralyzed stapedial muscle. Results in patients were compared to those obtained in three surgical control patients with intact efferent bundle, and in eight other normal subjects. All the subject groups exhibited a decrease in latency under contralateral sound except the patients with the severed efferent system who showed increased latencies.  相似文献   

18.
The relative importance of the fat and muscle layers of the human abdominal wall in producing ultrasonic wavefront distortion was assessed by means of direct measurements. Specimens employed included six whole abdominal wall specimens and twelve partial specimens obtained by dividing each whole specimen into a fat and a muscle layer. In the measurement technique employed, a hemispheric transducer transmitted a 3.75-MHz ultrasonic pulse through a tissue section. The received wavefront was measured by a linear array translated in the elevation direction to synthesize a two-dimensional aperture. Insertion loss was also measured at various locations on each specimen. Differences in arrival time and energy level between the measured waveforms and computed references that account for geometric delay and spreading were calculated. After correction for the effects of geometry, the received waveforms were synthetically focused. The characteristics of the distortion produced by each specimen and the quality of the resulting focus were analyzed and compared. The measurements show that muscle produces greater arrival time distortion than fat while fat produces greater energy level distortion than muscle, but that the distortion produced by the entire abdominal wall is not equivalent to a simple combination of distortion effects produced by the layers. The results also indicate that both fat and muscle layers contribute significantly to the distortion of ultrasonic beams by the abdominal wall. However, the spatial characteristics of the distortion produced by fat and muscle layers differ substantially. Distortion produced by muscle layers, as well as focal images aberrated by muscle layers, show considerable anisotropy associated with muscle fiber orientation. Distortion produced by fat layers shows smaller-scale, granular structure associated with scattering from the septa surrounding individual fat lobules. Thick layers of fat may be expected to cause poor image quality due to both scattering and bulk absorption effects, while thick muscle layers may be expected to cause focus aberration due to large arrival time fluctuations. Correction of aberrated focuses using time-shift compensation shows more complete correction for muscle sections than for fat sections, so that correction methods based on phase screen models may be more appropriate for muscle layers than for fat layers.  相似文献   

19.
A number of commercial distortion product otoacoustic emission (DPOAE) systems are available. Each system uses a slightly different signal processing approach. As a result, calculations commonly used to quantify the quality of collected DPOAE data (such as noise level and signal to noise ratio) differ across systems. In this report, the theory underlying DPOAE noise estimation is reviewed and a probabilistic approach to establishing local DPOAE norms is presented. Using this approach, a DPOAE detection criterion of 15 dB estimated signal-to-noise ratio was found to yield a false negative hearing screen outcome rate of .00053 and a false positive outcome rate identical to an established transient evoked otoacoustic emission (TEOAE) based protocol. Reasons why detection criteria may vary across distortion product systems and literature reports are presented.  相似文献   

20.
The effect of noise exposure on amplitude and phase of distortion product otoacoustic emissions (DPOAEs) was examined by five different paradigms: across a wideband of frequency, microstructure, input/output function, primary frequency ratio tuning curve, and group delay. The aim was to investigate the vulnerability of these different features to moderate levels of noise exposure. Nine subjects were exposed to third-octave-band noise. The DPOAE amplitude was reduced frequency specifically with the greatest reduction approximately half an octave above the frequency of the noise. The degree of amplitude reduction was greatest at low stimulus levels. There were no observed effects on the shape of the primary ratio tuning curve. A weak tendency to a decrease was seen in group delays. Distinct microstructure was seen in the amplitude against frequency of five out of seven subjects. The maximum to minimum ratio of the microstructure decreased, and the whole pattern shifted toward lower frequencies after noise exposure. Evidence of multiple internal reflection or interference was seen in the periodicity of the microstructure. Using a simple model of the microstructure based on multiple reflections, the noise-induced changes were reevaluated. A reduction in maximum to minimum microstructure ratio could be interpreted as a decrease in the internal reflection coefficient. The implications of these observations for the interpretation of the DPOAE measurements are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号