共查询到8条相似文献,搜索用时 0 毫秒
1.
Effects of resin formulation, catalyst, and curing temperature were studied for particleboard binder‐type urea‐formaldehyde (UF) and 6 ~ 12% melamine‐modified urea‐melamine‐formaldehyde (UMF) resins using the dynamic mechanical analysis method at 125 ~ 160°C. In general, the UF and UMF resins gelled and, after a relatively long low modulus period, rapidly vitrified. The gel times shortened as the catalyst level and resin mix time increased. The cure slope of the vitrification stage decreased as the catalyst mix time increased, perhaps because of the deleterious effects of polymer advancements incurred before curing. For UMF resins, the higher extent of polymerization effected for UF base resin in resin synthesis increased the cure slope of vitrification. The cure times taken to reach the vitrification were longer for UMF resins than UF resins and increased with increased melamine levels. The thermal stability and rigidity of cured UMF resins were higher than those of UF resins and also higher for resins with higher melamine levels, to indicate the possibility of bonding particleboard with improved bond strength and lower formaldehyde emission. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 377–389, 2005 相似文献
2.
Nádia T. Paiva Ana Henriques Paulo Cruz João M. Ferra Luisa H. Carvalho Fernão D. Magalhães 《应用聚合物科学杂志》2012,124(3):2311-2317
Melamine can be incorporated in the synthesis of urea‐formaldehyde (UF) resins to improve performance in particleboards (PB), mostly in terms of hydrolysis resistance and formaldehyde emission. In this work, melamine‐fortified UF resins were synthesized using a strong acid process. The best step for melamine addition and the effect of the reaction pH on the resin characteristics and performance were evaluated. Results showed that melamine incorporation is more effective when added on the initial acidic stage. The condensation reaction pH has a significant effect on the synthesis process. A pH below 3.0 results on a very fast reaction that is difficult to control. On the other hand, with pH values above 5.0, the condensation reaction becomes excessively slow. PBs panels produced with resins synthesized with a condensation pH between 4.5 and 4.7 showed good overall performance, both in terms of internal bond strength and formaldehyde emissions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
3.
Frederick H. Walker Michael Cook Gamini Vedage Rob Rasing 《Journal of Coatings Technology and Research》2009,6(3):283-313
Solid epoxy resin oligomers have traditionally been utilized for coatings that combine fast dry-to-touch speed and good flexibility,
properties greatly in demand in many applications such as marine and industrial maintenance coatings. Unfortunately, solid
epoxy resins require formulation with large quantities of solvent that make the attainment of modern VOC regulations difficult
or impossible. Coatings formulated from low molecular weight liquid epoxy resin (LER) on the other hand, can more easily meet
VOC challenges, but dry slowly and tend to be brittle. This article explores the concept of using fast reacting, difunctional
amine chain extenders to generate epoxy oligomers in situ as a means of meeting these opposing property demands. Methylamine-terminated
poly(N-methylazetidine) (p-NMAz) is prepared in a two-step process involving the Michael addition of methylamine to acrylonitrile
followed by hydrogenation in a methylamine-containing atmosphere to yield an oligomer stream with an M
n
of about 250. Hydrogenation of isophthalonitrile in a methylamine-containing atmosphere yields N,N′-dimethyl-meta-xylylenediamine (DMMXDA). Competitive pseudo-first-order kinetic measurements conducted in isopropyl alcohol indicate these
amines react approximately 3–3.6 times faster with phenyl glycidyl ether (PGE) than the primary amine meta-xylylenediamine (MXDA). These chain extenders can be formulated with traditional multifunctional amine crosslinkers to yield
coatings with lower VOC, faster dry speed, and better flexibility compared with corresponding coatings formulated without
the chain extender. Consistent with their chemical structures, p-NMAz proved capable of yielding coatings with the best impact
resistance and mandrel bend properties, while DMMXDA yielded coatings with better water and corrosion resistance properties.
相似文献
Frederick H. WalkerEmail: |
4.
We propose a novel composite (hybrid) organic/inorganic system that can be prepared as a coating (on 1 μm level) on glassy carbon and metal electrode substrates. Poly(3,4-ethylenedioxythiophene) or PEDOT based composite coatings were electrodeposited using cyclic voltammetry on glassy carbon and stainless steel substrates in the presence of 4-(pyrrole-1-yl) benzoic acid (PyBA) and phosphododecamolybdic acid (PMo12). The coating growth was facilitated by the addition of polyoxyethylene-10-laurylether (BRIJ10) neutral surfactant at the level of 0.04 mol dm−1 to improve solubility of the 3,4-ethylenedioxythiophene monomer and to form an aqueous micellear solution in the reaction medium. The fact that carboxylate-containing PyBA units link positively charged PEDOT structures tends to improve overall stability and adherence of composite coatings to stainless steel. The PEDOT/PyBA composite serves as a stable host matrix for large negatively charged polymolybdate inorganic species. Consequently, due to the formation of denser polymeric structures and to the existence of electrostatic repulsion effects, the polyanion-containing composite coatings are capable of largely blocking the access of pitting-causing anions (chlorides) to the surface of stainless steel. Interaction of phosphomolybdate with metal ions, namely with chromium(III) or even iron(III) or iron(II) that exist at the stainless steel–composite coating interface, may lead to the formation of insoluble deposits and exhibit overall passivating effect. 相似文献
5.
The development of reliable synthetic routes to polymeric nanostructures of well-defined composition, morphology and function is of scientific importance and technological interest. The generation of functional hollow polymeric nanostructures, hollow nanospheres and nanotubes in particular, can be achieved through direct and template-directed synthesis, core-shell precursors, and self-assembly of copolymers and polymer conjugates, as well as from dendrimers. The ability to prepare precursor macromolecules of well-defined structure and architecture has been substantially enhanced by recent advances in controlled radical polymerizations. The application and potential application of the hollow polymeric nanospheres and nanotubes as nanoreactors, and in diagnostics, encapsulation, controlled release, and other stimuli-responsive systems are also described. 相似文献
6.
Due to their highly branched structure and the large number of functional groups hyperbranched polymers possess unique properties that make them interesting for uses in a wide variety of applications. Some of the most widely investigated hyperbranched polymers are the polyesters based on 2,2-bis(methylol)propionic acid. In this paper we present the results of characterization studies of hyperbranched polyesters based on 2,2-bis(methylol)propionic acid which show that they are very complex products with a multidimensional distribution of various properties. The influence of the synthesis conditions on the structure and molar-mass characteristics of hyperbranched polyesters as well as the findings that allow a thorough understanding of the structure-property relationships are reviewed in detail. 相似文献
7.
Haiqing Li Johnson V. John Seong Jin Byeon Min Seon Heo Jun Hak Sung Kwang-Ho Kim Il Kim 《Progress in Polymer Science》2014
Controlled accommodation of metal nanostructures (MNSs) into the matrix of a well-defined polymer architecture offers an effective approach to achieve hierarchically structured nanocomposites with tunable synergistic properties to broaden application potentials in the emerging fields of energy, environmental science, and medicine. This review focuses on the recently developed zero-dimensional and one-dimensional MNSs@polymer hybrid nanostructures obtained by solution-based synthetic strategies. Progress in the controlled synthesis of those hybrid nanostructures in terms of the number (e.g., monomer, dimer and trimer), organization manner (e.g., linear alignment or confined assembly in certain domains), and spatial arrangement (e.g., in the core and shell) of the MNSs within the distinct polymer matrices are detailed. The synergistic properties and potential applications of those MNSs@polymer hybrids associated with their compositions and morphologies are also reviewed. 相似文献
8.
Nabarun Roy 《Progress in Polymer Science》2012,37(6):781-819
The various forms of carbon used in composite preparation include mainly carbon-black, carbon nanotubes and nanofibers, graphite and fullerenes. This review presents a detailed literature survey on the various modifications of the carbon nanostructures for nanocomposite preparation focusing upon the works published in the last decade. The modifications of each form of carbon are considered, with a compilation of structure-property relationships of carbon-based polymer nanocomposites. Modifications in both bulk and surface modifications have been reviewed, with comparison of their mechanical, thermal, electrical and barrier properties. A synopsis of the applications of these advanced materials is presented, pointing out gaps to motivate potential research in this field. 相似文献