首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique has been developed to measure the ground-ring inductance in a ball grid array (BGA) package. A simple parallel LC circuit is used to model the ground-ring parasitics at frequencies up to 1 GHz. After connecting an SMA connector to the ground ring of the BGA package, a network analyser can be used to measure the reflection coefficient (S11) up to 1 GHz from which the ground-ring inductance can be extracted. It has been found that the ground-ring inductance depends very strongly on the phase of S11. This leads to the advantage of excellent accuracy for the extracted quantities. The experimental ground-ring inductance data for a variety of BGA packages are verified by Ansoft simulation results  相似文献   

2.
A technique for simultaneously measuring the real and imaginary parts of both the permittivity and the permeability of a given material is discussed. A gap in a coaxial line is filled with the material under test. Complex permittivity and permeability are computed from the S-parameter (S11 and S21) measurement made on the gap, taking into account higher-order modes excited at the discontinuity. Measured ϵr and μr data for several materials are presented from 45 MHz up to 18 GHz. This technique shows good agreement between calculated and generally accepted values  相似文献   

3.
This work presents a Ka-band two-way 3 dB Wilkinson power divider using synthetic quasi-transverse electromagnetic (TEM) transmission lines (TLs). The synthetic quasi-TEM TL, also called complementary-conducting-strip TL (CCS TL), is theoretically analyzed. The equivalent TL model, whose production is based on the extracted results, is applied to the power divider design. The prototype is fabricated by the standard 0.18 mum 1P6M CMOS technology, showing the circuit size of 210.0 mumtimes390.0 mum without contact pads. The measurement results, which match the 50 Omega system, reveal perfect agreements with those of the simulations. The comparison reveals the following characteristics. The divider exhibits an equal power-split with the insertion losses (S21 and S31) of 3.65 dB. The return losses (S11, S22 and S33) of the prototype are higher than 10.0 dB from 30.0 to 40.0 GHz.  相似文献   

4.
A new and accurate error correction technique for on-chip intensity modulation response measurements of high-frequency optoelectronic devices is presented. Mathematical expressions for the different sources of errors that exist in the measurement system are derived. The new correction technique applied to the modulation response measurement of a strained quantum well laser diode shows excellent agreement with the theoretically expected result. Simulation results for a small-signal circuit model of the laser diode show excellent agreement with the measured input reflection coefficient S11 and the modulation response S21. With the corrected modulation response measurement, more accurate parameters for this model are extracted  相似文献   

5.
Scattering matrix approach for the design of microwave filters   总被引:1,自引:0,他引:1  
A synthesis procedure, based on a distributed parameter model, for the design of microwave filters is presented in this paper. The frequency response of the filter is described in terms of the characteristic polynomial T21=S11/S21 where S11 and S21 are the scattering parameters of the filter. Starting from the desired polynomial T21, the design scheme directly yields the scattering parameters of the various junctions, which can be realized by any kind of discontinuity. The capability of synthesizing an arbitrary frequency response allows one to introduce the concept of a “predistorted” characteristic polynomial in order to compensate for the degradations caused by multimodal interactions, frequency dispersion, etc. Comparison with measured data of a Chebyshev-like eight-pole E-plane filter confirms the validity of the method also in the presence of losses  相似文献   

6.
We designed and analyzed a microwave oscillation loop formed by a dielectric loaded cavity, amplifiers and transmission lines for the dielectric constant measurement of samples at both room and very high temperature. An oscillation condition for an arbitrary loop is derived in S-parameter notation, by which the commonly used oscillation condition in loop phase and gain notation is proved to be valid only in the special case when either S11=S21=0 or S22 =S12=0. Based on the S-parameter oscillation condition, a theoretical model is established and verified with a discrepancy of less than 0.041% between the calculated and the measured oscillation frequencies. With this model, the loop characteristics are investigated. From the measured loop oscillation frequency, the cavity resonant frequency, and thereby the dielectric constant of the sample in the cavity, can be predicted. Based on this analysis, an active dielectrometer is constructed with resultant errors of less than 4% for ϵ'<20 and less than 11% for ϵ'<80. This dielectrometer requires no tuning and no external microwave power source. Moreover, a high power (>100 W) oscillation loop for the dielectric constant measurement of a microwave heated sample (1000°C) is developed  相似文献   

7.
A measurement-based method for extracting the parasitic parameters of active power electronics modules (IPEMs) is proposed. Parasitic inductances and capacitances inside the IPEM can all be extracted using this method without destroying the structure. The linearized model is derived from impedance measurement and it is valid from low frequency to frequencies as high as 100 MHz. Extracted parameters are compared to those from commercial software and the results are in good agreement. A parallel resonance method is proposed for the characterization of common-mode capacitances  相似文献   

8.
Conventional techniques to extract channel mobility, μ, and sheet carrier concentration, ns, in heterostructure field-effect transistors (HFETs) do not account for the distributed nature of the device. This can result in substantial errors. To address this, we have developed a new technique that consists of measuring the gate-to-source impedance with the drain floating (Z11) over a broad frequency range. A transmission line model (TL model) is fitted to Re[Z11], thus obtaining the gate capacitance and channel resistance (and consequently μ(VGS) and ns(V GS)) in a single measurement. We demonstrate this technique in InAlAs-InGaAs on InP HFET's. The TL model faithfully represents Z11 from 100 Hz to 15 MHz. Our technique can easily be automated and thus is a good tool for accurate charge control in an industrial environment  相似文献   

9.
In this paper, a tunable wideband linear transresistance (Rm ) amplifier is proposed and analyzed. Using the tunable Rm amplifier, a new transresistance-capacitor (Rm-C) differentiator is designed. Considering the intrinsic capacitances of the MOS transistors as filter elements, this Rm-C configuration can he regarded as a very high frequency (VHF) bandpass biquadratic filter. The proposed biquad has a simple structure and thus occupies a small chip area and consumes little power. Moreover, higher-order VHF bandpass filters can be realized by directly cascading the biquads. Experimental results have successfully proven the capability of the proposed new filter implementation method in realizing VHF bandpass filters with the center frequency higher than 100 MHz when Cd=1 pF. The deviations of the measured center frequency f o and quality factor Q of the fabricated bandpass filter from the simulated results are less than 8%. The deviation of the center frequency can be post-tuned by adjusting the control voltages VCN and VCP of the tunable Rm amplifier. With 1 pF differentiating capacitor, the center frequency of the fabricated VHF Rm-C bandpass filters can be tuned in a wide range larger than 30 MHz. The measured maximum signal level is 25 mVrms and the dynamic range is 47 dB. The chip area is 0.05 mm2 and power consumption is 5.05 mW with ±2.5 V power supply  相似文献   

10.
We have developed 40-Gb/s traveling-wave electroabsorption-modulator-integrated distributed feedback laser (TW-EML) modules using several advanced technologies. First, we have adopted a selective area growth (SAG) method in the fabrication of the 40-Gb/s EML device to provide active layers for the laser and the electroabsorption modulators (EAMs) simultaneously. The fabricated device shows that the measured 3-dB bandwidth of electrical-to-optical (E/O) response reaches about 45 GHz and the return loss (S11) is kept below -10 dB up to 50 GHz. For the module design of the device, we mainly considered electrical and optical factors. The measured S11 of the fabricated 40 Gb/s TW-EML module is below -10 dB up to about 30 GHz and the 3-dB bandwidth of the E/O response reaches over 35 GHz. We also have developed two types of coplanar waveguide (CPW) for the application of the driver amplifier integrated 40 Gb/s TW-EML module, which is a system-on-package (SoP) composed of an EML device and a driver amplifier device in a module. The measured S11 of the two-step-bent CPW is below -10 dB up to 35 GHz and the measured S11 of the parallel type CPW is below -10 dB up to 39 GHz.  相似文献   

11.
This paper experimentally and theoretically confirms the validity of the definition proposed by Das (1996) for computing the complex characteristic impedance of the first higher order (EH1) microstrip mode. The normalized complex propagation constant and complex characteristic impedance of the microstrip obtained by the rigorous full-wave integral-equation method are also presented. To better understand the circuit behavior of the leaky mode at the respective frequencies, the results are analyzed in both frequency and transformed steepest descent plane. A differential time-domain reflectometry (TDR) experiment shows that the experimental results are in excellent agreement with the time-domain plots obtained theoretically by the inverse discrete Fourier transform of the transmission line modeled by the dispersive characteristic. The propagation characteristics of the echoed signals in the time domain, which are reflected from the open end of the leaky line, are analyzed in detail using the corresponding group velocity of the EH1 mode. The time-to-frequency conversion of the measured TDR data reveals that the reflection, leaky, and propagation zones coexist simultaneously for the EH, mode propagation. The conversion also accurately assesses the attenuation constant of the EH, mode if the attenuation is not too high. The Fourier transform of the TDR responses also simultaneously yields the input reflection coefficient (S11) and the complex characteristic impedance. The complex characteristic impedance extracted from the TDR responses also agrees closely with the theoretical data  相似文献   

12.
Design criteria of active phase shifters based on GaAs/AlGaAs multichannel (MC) HFET in the frequency range 4-60 GHz are presented. The phase characteristics of MCHFET devices were studied using the computer aided design program TOUCHSTONE. The dependence of transmission phase on various intrinsic elements in the equivalent circuit model as a function of control gate bias was also studied. There are limited gate bias ranges which correspond to the active regions of the two conducting wells for which a quasi-linear continuous phase shift for analog applications was achieved. Continuously varying the gate bias from Vgs=-1.9 V to Vgs=-0.6 V results in a quasilinear phase shift of 10°, 15°, 21°, and 29° at f=12, 20, 30, and 60 GHz, respectively. Similarly, varying the gate bias from Vgs =-0.4 V to Vgs=0.7 V a quasi-linear phase shift of 21°, 26°, 27°, and 23° at f=12, 20, 30, and 60 GHz, respectively, was achieved. The gain variation was less than 3 dB in these bias regions. With digital applications in mind, a maximum differential phase shift of around 50° was obtained by switching the gate bias discretely. The transmission phase of single gate MCHFET mostly depends on variation of gate source capacitance with gate bias rather than on other intrinsic elements. The dependence of phase shift on various geometrical and structural parameters is also presented. To test the practicality of the device, other scattering parameters (e.g., S11, S22, S12) and the noise figure (NF) were finally studied  相似文献   

13.
A novel two-beam scanning active leaky-wave antenna   总被引:2,自引:0,他引:2  
A novel two-beam scanning active leaky-wave antenna (LWA) has been developed. This LWA with a two-terminal feeding microstrip line structure is integrated with a varactor-tuned X-band high-electron mobility transistor (HEMT) voltage-controlled oscillator (VCO). The signal of the VCO is injected via a T-divider into the radiating element. To excite the first higher order mode, the designed antenna is fed asymmetrically at both ends of the microstrip line. Compared with single-terminal feeding leaky-wave antennas, this configuration offers the advantages of dual-direction and suppression of the reflected wave caused by the open end of the radiating element. The scanning angle is steered over a range of 24-46° for the right beam and 128-150° for the left beam. The effective isotropic radiated power (EIRP) is calculated to be 17.5 and 16.67 dBm at 10.4 GHz, respectively. The measured return loss S11 is less than -10 dB in the range of 9-11.5 GHz. The transmission coefficient S21 indicates that the power radiates into the space  相似文献   

14.
An improved two-frequency method of capacitance measurement for the high-k gate dielectrics is proposed. The equivalent circuit model of the MOS capacitor including the four parameters of intrinsic capacitance, loss tangent, parasitic series inductance, and series resistance is developed. These parameters can be extracted by independently measuring the capacitor at two different frequencies. This technique is demonstrated for high-k SrTiO3 gate dielectrics and the results show that the calibrated capacitances are invariant over a wide range of frequency. In addition, the extracted loss tangent, inductance and resistance are independent on gate voltage and frequency. The effect of series resistance on the frequency dispersion of the capacitance can be also explained by this model. These results indicate that this modified technique can be incorporated in the routine capacitance-voltage (C-V) measurement procedure providing the physically meaningful data for the high-k gate dielectrics  相似文献   

15.
随着玻璃通孔(TGV)制作工艺的成熟,微波毫米波系统采用玻璃基板进行集成,其高频传输特性成为研究的重点.对玻璃通孔的互连设计、制作和传输性能进行研究.在玻璃基板上分别设计直通传输线和带两个TGV、等长传输线的TGV传输结构;通过激光改性、腐蚀扩孔和电镀填充的TGV工艺制作技术以及薄膜电路布线技术,在玻璃基板上制作直通传...  相似文献   

16.
One compact slow-wave microstrip branch-line coupler is presented. The new structure not only effectively reduces the occupied area to 28% of the conventional branch-line coupler at 2.0 GHz, but also has high second harmonic suppression performance. The measured results indicate a bandwidth of more than 200 MHz has been achieved while the phase difference between S21 and S31 is within 90deg plusmn 1deg. Furthermore, the measured insertion loss is comparable to that of a conventional branch-line coupler. The new coupler can be easily implemented by using the standard printed-circuit-board etching processes and is very useful for wireless communication systems.  相似文献   

17.
In a previous paper we have presented a method for evaluating the performance of anechoic chambers by analyzing the S-parameters of a system comprising two antennas facing each other in an anechoic chamber using the matrix pencil method. In this work, we present an improvement of this resonance detection technique using only the transmission parameter S21. The propagating components of the transmission parameter S21 are derived over small frequency intervals using the matrix pencil method and then removed from S21 in a two-level decomposition procedure. The resonances are clearly identified from the residual signal. Two examples of resonance detection in two different anechoic chambers illustrate the proposed method  相似文献   

18.
A new input matching method making use of shunt-shunt feedback capacitance is introduced. Based on the new input matching method, reconfigurable SiGe low-noise amplifiers (LNAs) by varying shunt-shunt feedback capacitance are proposed. Two approaches are used to vary the shunt-shunt feedback capacitance. One approach is to switch between two different bias currents while the other is to use a series combination of a switch and a capacitor. Miniaturized fully monolithic reconfigurable SiGe LNAs without emitter degenerative inductors were realized by the above two approaches. The reconfigurable SiGe LNA achieved by switching bias currents only occupies a very small area of 355 mumtimes155 mum, excluding measurement pads. This LNA achieves an input return losses (S11) of -27.6 dB, a voltage gain (A v) of 19.8 dB, and a noise figure (NF) of 3.18 dB for 2.4-GHz band when biased at a current of 3.8 mA and can be reconfigured to obtain Av=20.4/20.3 dB, S11=-47.1/-24.6 dB and NF=3.42/3.21 dB for 5.2/5.7-GHz band when bias current is switched to 3 mA. In addition, a 2.4/4.9/5.2/5.7-GHz reconfigurable SiGe LNAs for WLAN applications, whose variable shunt-shunt feedback capacitance is controlled by a switch and a capacitor, was also realized  相似文献   

19.
Based on a generalized circuit model for parallel-operated amplifiers with linear two-port devices, it has been proved that the S-parameter ratio S21/S12 and hence MSG (maximum stable gain) are invariant as long as the devices have an identical value of S21/S12 and the input and output networks are reciprocal. The invariance of K factor has been shown to hold for two cases: (i) devices are identical and input/output networks are lossless and symmetric with respect to each device, and (ii) identical admittances are added to the networks of case (i) so as to connect every device port with each other. Thus at least in these two cases, MAG (maximum available gain) and U (unilateral gain) are invariant as well as MSG under parallel operation of linear two-port devices. The invariance of S21/S12 and hence MSG applies to a variety of parallel-operated amplifiers such as distributed amplifiers and linear power amplifiers  相似文献   

20.
An InP-based integrated HBT amplifier with PNP active load was demonstrated for the first time using complementary HBT technology (CRBT). Selective molecular beam epitaxy (MBE) regrowth was employed and a merged processing technology was developed for the monolithic integration of InP-based NPN and PNP HBTs on the same chip. The availability of PNP devices allowed design of high gain amplifiers with low power supply voltage. The measured amplifier with PNP HBT active load achieved a voltage gain of 100 with a power supply (VCC) of 1.5 V. The corresponding voltage swing was 0.9 V to 0.2 V. The amplifier also demonstrated S21 of 7.8 dB with an associated S11 and S22 of -9.5 dB and -8.1 dB, respectively, at 10 GHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号