首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autochthonous strains of lactic acid bacteria (LAB) have been isolated from traditionally homemade cheeses collected from specific ecological localities across Serbia and Montenegro. Genetic and biochemical analysis of this LAB revealed that they produce bacteriocins, proteinases and exopolysaccharides. LAB produces a variety of antimicrobial substances with potential importance for food fermentation and preservation. Apart from the metabolic end products, some strains also secrete antimicrobial substances known as bacteriocins. Among the natural isolates of LAB from homemade cheeses, bacteriocin producers were found in both lactococci and lactobacilli. Lactococcus lactis subsp. lactis BGMN1-5 was found to produce three narrow spectrum class II heat-stable bacteriocins. In addition to bacteriocin production, BGMN1-5 synthesized a cell envelope-associated proteinase (CEP) and shows an aggregation phenotype. Another isolate, L. lactis subsp. lactis BGSM1-19 produces low molecular mass (7 kDa) bacteriocin SM19 that showed antimicrobial activity against Staphylococcus aureus, Micrococcus flavus and partially against Salmonella paratyphi. Production of bacteriocin reaches a plateau after 8 h of BGSM1-19 growth. Bacteriocin SM19 retained activity within the wide pH range from 1 to 12 and after the treatment at 100 degrees C for 15 min. Among collection of lactobacilli, the isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8 produces heat-stable bacteriocin SJ (approx. 5 kDa) polypeptide. It retained activity after treatment for 1 h at 100 degrees C, and in the pH range from 2 to 11. In addition to isolates from cheeses, bacteriocin-producing human oral lactobacilli were detected. Most of them showed antimicrobial activity against streptococci, staphylococci and micrococci, but not against Candida. Isolate BGHO1 that showed the highest antimicrobial activity was determined as L. paracasei. Interestingly, Lactobacillus helveticus BGRA43, which was isolated from the human intestine showed strong activity against Clostridium sporogenes, but it was not possible to detect any bacteriocin production in this isolate by using standard procedures. Further analysis of antimicrobial activity revealed that BGRA43 has a relatively broad spectrum. Lactobacilli resistant to nisin were also detected among natural isolates. They produce bacteriocins, which have no activity against nisin producing lactococci.  相似文献   

2.
The strain Lactobacillus paracasei subsp. paracasei BGBUK2-16. which was isolated from traditionally homemade white-pickled cheese, produces bacteriocin 217 (Bac217; approximately 7 kDa). The onset of Bac217 biosynthesis was observed in the logarithmic phase of growth, and the production plateau was reached after 9 or 12 h of incubation at 37 and 30 degrees C, respectively, when culture entered the early stationary phase. Biochemical characterization showed that Bac217 retained antimicrobial activity within the range of pH 3 to 12 or after treatment at 100 degrees C for 15 min. Bac217 antimicrobial activity also remained unchanged after storage at 4 degrees C for 6 months or -20 degrees C for up to 12 months. However, Bac217 activity was completely lost after treatment with different proteolytic enzymes. BGBUK2-16 contains only one plasmid about 80 kb in size. Plasmid curing indicated that genes coding for Bac217 synthesis and immunity seem to be located on this plasmid. Bac217 exhibited antimicrobial activity against some pathogenic bacteria, such as Staphylococcus aureus and Bacillus cereus. Interestingly, Bac217 showed activity against Salmonella sp. and Pseudomonas aeruginosa ATCC27853. The inhibitory effect of BGBUK2-16 on the growth of S. aureus in mixed culture was observed. S. aureus treatment with Bac217 led to a considerable decrease (CFU/ml) within a short period of time. The mode of Bac217 action on S. aureus was identified as bactericidal. It should be noted that the strain BGBUK2-16 was shown to be resistant to bacteriocin nisin, which is otherwise widely used as a food additive for fermented dairy products.  相似文献   

3.
Enterocin EJ97 from Enterococcus faecalis EJ97 showed a concentration-dependent antimicrobial activity against Listeria monocytogenes CECT 4032. Activity of enterocin EJ97 against L. monocytogenes CECT 4032 increased slightly at 4 degrees C, and cold-adapted cells did not show any increased resistance. Sensitivity of L. monocytogenes CECT 4032 to enterocin EJ97 was not modified by the addition of sodium benzoate, sodium acetate, NaCl or sodium tripolyphosphate. Anti-listeria activity was enhanced by potassium nitrate, and especially by sodium nitrite at concentrations of 50 microg/ml or above. E. faecalis EJ97 produced bacteriocin activity during cocultivation with L. monocytogenes CECT 4032 at 37 degrees C and also at 15 degrees C, but not at 4 degrees C. Growth of L. monocytogenes CECT 4032 was inhibited by bacteriocin produced during cocultivation at 37 and 15 degrees C, and the degree of inhibition was influenced by the incubation temperature and the initial concentrations of enterococci and listeria. E. faecalis EJ97 also produced bacteriocin during cocultivation in half-skimmed milk, although its capacity to control L. monocytogenes was limited to populations of 10(3) CFU/ml or lower.  相似文献   

4.
Enterococci (118) from Italian sausages were tested for the production of antimicrobial substances. Of these, 7.6% showed antibacterial activity against one or several closely related microorganisms used as indicators. Enterococcus casseliflavus IM 416K1 in particular produced a bacteriocin (Enterocin 416K1) with strong anti-listerial antagonistic activity. The bacteriocin withstood heating at 90 degrees C for 120 min and storage at 4 degrees C for 6 months. The mode of action was identified as bactericidal. The crude activity of Enterocin 416K1 was linked to a molecule with an apparent molecular weight smaller than 5 kDa. Plasmid analysis of E. casseliflavus IM 416K1 revealed the presence of four plasmids with different molecular weights (34, 11, 7 and 3.3 MDa). All the Bac- variants produced by curing experiments showed loss of the single plasmid of 34 MDa. Bacteriocin activity and immunity production may be linked to genes located on that same plasmid.  相似文献   

5.
Lactic acid bacteria were isolated from kimchi and screened for bacteriocin production. Strain H-559, identified as Lactococcus lactis subsp. lactis, exhibited the strongest antibacterial activity among them and was active against pathogenic bacteria such as Listeria monocytogenes and Staphylococcus aureus as well as many lactic acid bacteria. The antimicrobial substance produced by L. lactis subsp. lactis H-559 was inactivated by alpha-chymotrypsin, and protease type IX and XIV and was confirmed to be a bacteriocin. The bacteriocin activity was stable from pH 2.0-11.0 and up to 10 min heating at 100 degrees C. The bacteriocin was sequentially purified by ammonium sulfate precipitation, ion-exchange chromatography, and reversed-phase high-performance liquid chromatography (HPLC). Its molecular weight was determined to be 3343.7 Da by MALDI-mass spectrometry. Isoleucine was detected as the first N-terminal amino acid residue but the remaining amino acid sequence could not be determined by the Edman degradation method. It was different from other bacteriocins in terms of pH stability, molecular weight, amino acid composition, and the partial amino acid sequences of peptides obtained by acid hydrolysis.  相似文献   

6.
Jenseniin G is an antibotulinal bacteriocin (antimicrobial peptide) produced by the dairy culture, Propionibacterium thoenii (jensenii) P126. Activity from crude jenseniin G preparations isolated from static cultures was not detected in unconcentrated cultures before day 7. Activity was not detectable until the spent culture medium was concentrated 50-100 fold. Maximum activity (21 AU/ml) was observed in concentrated supernates at day 9. The production of bacteriocin jenseniin G was increased in fed-batch fermentations for 14 d at 32 degrees C in sodium lactate broth (NLB) containing 1.2% sodium lactate. Viable cell numbers in static and fed-batch cultures reached 1.2 and 5.4x10(9), respectively, during late exponential/early stationary phase (3 d). Concentrations of viable cells in fed-batch fermentations remained constant throughout the incubation period; those in static fermentations dropped after day 6 to a final concentration of 1.5x10(7). During fed-batch fermentations, jenseniin G was directly detected at day 5. In fed-batch fermentations, maximum activity in concentrated supernates (384 AU/ml) on day 12 provided an 18 fold increase over yields in static cultures and in fermenter without pH control, and 2.4 fold increase over yields in fermenter at controlled pH at 6.4. Fed-batch fermentation shows promise as a method to obtain high concentrations of industrially significant bacteriocins from dairy propionibacteria.  相似文献   

7.
A total of 14,020 lactic acid bacteria (LAB) were isolated from nham and screened for bacteriocin production. One Lactococcus lactis strain WNC 20 produced a bacteriocin that not only inhibited closely related LAB, but also some food-borne pathogens including Listeria monocytogenes, Clostridium perfringens, Bacillus cereus and Staphylococcus aureus. Biochemical studies revealed that the bacteriocin was heat-stable even at autoclaving temperature (121 degrees C for 15 min) and was active over a wide pH range (2-10). The bacteriocin was inactivated by alpha-chymotrypsin and proteinase K but not other proteases. The antimicrobial spectrum and some characteristics of this bacteriocin were nearly identical to that of nisin. The gene encoding this bacteriocin was amplified by polymerase chain reaction (PCR) with nisin gene-specific primer. Sequencing of this gene showed identical sequences to nisin Z as indicated by the substitution of asparagine residue instead of histidine at position 27. The ability of the bacteriocin produced by Lc. lactis WNC 20 may be useful in improving the food safety of the fermented product.  相似文献   

8.
Leuconostoc mesenteroides E131, isolated from dry fermented sausages, produces an antimicrobial agent, characterized as bacteriocin. The effect of pH and temperature on growth and bacteriocin production, using MRS broth as growth medium, was studied in a fermentor. The pH value at which the best cell growth was observed (6.5) did not coincided with the value at which the maximum bacteriocin activity was attained (5.5). In contrast, the maximum bacteriocin activity was attained at temperature (25 °C) close to the optimum temperature for cell growth (25–30 °C). Notably, the range of pH and temperature for good bacteriocin production was within the range used for sausage fermentation. An empirical model was developed to describe the growth and bacteriocin production in different pH and temperature conditions. The model was able to describe growth and bacteriocin production and it could be used to predict the kinetic parameters of growth and bacteriocin production within the pH and temperature range examined.  相似文献   

9.
Forty eight lactic acid bacteria strains isolated from “Gueddid”, a traditionally Tunisian fermented meat, were screened for bacteriocin production. Four strains named MMZ 04, 09, 13, and 17 showed antimicrobial activity and were identified as Enterococcus faecium by molecular methods based on the 16S-23S rDNA ISR, PCR-RFLP analysis of the 16S-23S rDNA ISR and species-specific primers. The four antimicrobial compounds were heat stable (121 °C for 15 min), active over a wide pH range (3–9) and the antimicrobial activity was lost after treatment with trypsin, -chymotrypsin and proteinase K but not by lysozyme and lipase. The mode of action of enterocin MMZ17 was identified as bactericidal. The MMZ17 bacteriocin was partially purified by ammonium sulphate precipitation and C18 Sep-Pack chromatography. The apparent molecular size of enterocin MMZ17 as indicated by activity detection after SDS-PAGE was lower than 6.5 KDa. According to these assays, enterocin MMZ17 can be classified as a small, heat-stable Listeria-active peptide, presumably belonging to class IIa bacteriocins.  相似文献   

10.
The antimicrobial effect of the broad-spectrum bacteriocin enterocin AS-48 against the toxicogenic psychrotrophic strain Bacillus cereus LWL1 has been investigated in a model food system consisting of boiled rice and in a commercial infant rice-based gruel dissolved in whole milk stored at temperatures of 37 degrees C, 15 degrees C and 6 degrees C. In food samples supplemented with enterocin AS-48 (in a concentration range of 20-35 mug/ml), viable cell counts decreased rapidly over incubation time, depending on the bacteriocin concentration, the temperature of incubation and the food sample. Enterotoxin production at 37 degrees C was also inhibited. Heat sensitivity of endospores increased markedly in food samples supplemented with enterocin AS-48: inactivation of endospores was achieved by heating for 1 min at 90 degrees C in boiled rice or at 95 degrees C in rice-based gruel. Activity of enterocin AS-48 in rice gruel was potentiated by sodium lactate in a concentration-dependent way.  相似文献   

11.
Enterocin AS-48 is a candidate bacteriocin for food biopreservation. Before addressing application of AS-48 to vegetable-based foods, the interaction between AS-48 and vegetable food components and the stability of AS-48 were studied. Enterocin AS-48 had variable interactions with fruit and vegetable juices, with complete, partial, or negligible loss of activity. For some juices, loss of activity was ameliorated by increasing the bacteriocin concentration, diluting the juice, or applying a heat pretreatment. In juices obtained from cabbage, cauliflower, lettuce, green beans, celery, and avocado, AS-48 was very stable for the first 24 to 48 h of storage under refrigeration, and decay of activity was markedly influenced by storage temperature. In fresh-made fruit juices (orange, apple, grapefruit, pear, pineapple, and kiwi) and juice mixtures, AS-48 was very stable for at least 15 days at 4 degrees C, and bacteriocin activity was still detectable after 30 days of storage. Gradual and variable loss of activity occurred in juices stored at 15 and 28 degrees C; inactivation was faster at higher temperatures. In commercial fruit juices (orange, apple, peach, and pineapple) stored at 4 degrees C, the bacteriocin was completely stable for up to 120 days, and over 60% of initial activity was still present in juices stored at 15 degrees C for the same period. Commercial fruit juices stored at 28 degrees C for 120 days retained between 31.5% (apple) and 67.71% (peach) of their initial bacteriocin activity. Solutions of AS-48 in sterile distilled water were stable (120 days at 4 to 28 degrees C). Limited loss of activity was observed after mixing AS-48 with some food-grade dyes and thickening agents. Enterocin AS-48 added to lettuce juice incubated at 15 degrees C reduced viable counts of Listeria monocytogenes CECT 4032 and Bacillus cereus LWL1 to below detection limits and markedly reduced viable counts of Staphylococcus aureus CECT 976.  相似文献   

12.
Streptococcus macedonicus ACA-DC 198, a natural cheese isolate, produces the anticlostridial bacteriocin, macedocin. Bacteriocin activity was detected from the mid-exponential growth phase and remained constant during the stationary phase. A secondary model was setup to describe the influence of temperature (20-45 degrees C) and pH (5.1-6.9) on cell growth of and bacteriocin production by S. macedonicus ACA-DC 198 during in vitro laboratory fermentations. The optimum temperature for bacteriocin production (20-25 degrees C) was markedly lower than the optimum growth temperature (42.3 degrees C). In contrast, the specific macedocin production was maximal around pH 6.0, whereas growth was optimal at pH 6.4. Consequently, the maximum bacteriocin activity was reached between pH 6.0 and 6.5.  相似文献   

13.
Lactobacillus plantarum ST31 isolated from sourdough produced an antimicrobial substance inhibiting other strains of the genera Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, Bacillus and some foodborne pathogens including Staphylococcus aureus. This antimicrobial substance was inactivated by proteolytic enzymes. Consequently, it was characterized as a bacteriocin and was designated plantaricin ST31. This bacteriocin was stable in the pH range 3-8 and it was not affected by amylolytic enzymes. Production of plantaricin was pH and temperature dependent, and maximum yields were obtained in MRS broth cultures maintained at pH 6 and incubated at 30 degrees C in the exponential phase to the early stationary growth phase of the producer organism. This bacteriocin was purified by using consecutive ammonium sulfate and reversed-phase chromatography. It is a peptide of 20 amino acid residues with a mass of 2755+/-0.3 Da, as determined by electrospray mass spectrometry. The sequence of Plantaricin ST31 showed no similarity to those of other bacteriocins. Plantaricin ST31 production appeared to be chromosomally encoded.  相似文献   

14.
Lactococcin MMT24 is a novel bacteriocin produced by Lactococcus lactis MMT24, a strain isolated from a Tunisian traditional cheese. The bacteriocin shows a narrow antimicrobial activity against closely related lactic acid bacteria. Lactococcin MMT24 is heat resistant, remains active after incubation at pH 3 to 10, lyophilization, long-term storage at -20 degrees C and is sensitive to treatment with proteolytic enzymes. The mode of action of lactococcin MMT24 was identified as bactericidal. Purification of the active compound showed that lactococcin MMT24 consists of two distinct peptides, named pepalpha and pepbeta, whose complementary action is necessary for full antibacterial activity. Optimal antibacterial activity was obtained when the complementary peptides pepalpha and pepbetawere present in equal amounts. Mass spectrometry analysis showed masses of 3765.33 Da and 3255.26 Da for pepalpha and pepbeta, respectively. These molecular masses do not correspond to those of so far described bacteriocins. Addition of 50 nmol l(-1) of lactococcin MMT24 to cells of L. lactis ssp. cremoris ATCC11603 induced increase in the concentration of K+ in supernatant indicating a massive leakage of this ion from the cells. This release was most likely caused by pores formation by the pepalphaand pepbeta peptides in the target bacterial membrane.  相似文献   

15.
A bacteriocinogenic strain identified as Enterococcus faecium SH01 was isolated from mukeunji, a Korean traditional over-ripened kimchi with antimicrobial activities against Listeria monocytogenes KCTC 3569 and Lactobacillus curvatus KFRI 166. The maximum bacteriocin titer (1,280 AU/mL) was detected at the early stationary phase and was maintained for 28 h with no activity loss. The bacteriocin activity, which disappeared after treatment with the proteolytic enzymes α-chymotrypsin, pronase E, proteinase K, and trypsin, was partially inactivated using α-amylase. The activity of bacteriocin SH01 remained after heat treatment (121°C, 15 min) and exposure to pH values from 2–12. The molecular weight of crude bacteriocin SH01 was 3 kDa. The bacteriocin production phenotype (Bac+) was linked to a 6 kb plasmid. Bacteriocin SH1 production was not induced by the co-presence of viable cells, heat treatment, or a cell-free indicator supernatant. The mode of action of bacteriocin SH1 was bactericidal.  相似文献   

16.
Strain BH5 was isolated from naturally fermented Kimchi and identified as a bacteriocin producer that has bactericidal activity against Micrococcus flavus ATCC 10240. Strain BH5 was identified tentatively as Lactococcus lactis by API test. Lactococcus lactis BH5 showed a broad spectrum of activity against most of the nonpathogenic and pathogenic microorganisms tested by the modified deferred method. The activity of lacticin BH5, named tentatively as the bacteriocin produced by L. lactis BH5, was detected at the mid-log growth phase, reached its maximum during the early stationary phase, and decreased after the late stationary phase. Lacticin BH5 also showed a relatively broad spectrum of activity against nonpathogenic and pathogenic microorganisms as tested by the spot-on-lawn method. Its antimicrobial activity on sensitive indicator cells was completely destroyed by protease XIV. The inhibitory activities of lacticin BH5 were detected during treatments up to 100 degrees C for 30 min. Lacticin BH5 was very stable over a pH range of 2.0 to 9.0 and was stable with all the organic solvents examined. It demonstrated a typical bactericidal mode of inhibition against M. flavus ATCC 10240. The apparent molecular mass of lacticin BH5 was estimated to be in the region of 3 to 3.5 kDa, by the direct detection of bactericidal activity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

17.
Bacteriocin production by Enterococcus faecium RZS C5 occurs in a growth-associated way but is generally switched off in the very early growth phase. The influence of environmental stress on the bacteriocin production kinetics by E. faecium RZS C5 was analysed at a controlled temperature of 35 degrees C and constant pH 6.5. The effect of environmental stress on bacteriocin production was depending on the type of stress applied. Oxidative stress did not interfere with cell growth or bacteriocin activity. In contrast, salt stress decreased both the cell growth and the specific bacteriocin production. Nevertheless, moderate levels of sodium chloride improved bacteriocin activity because they increased the biomass concentration at which bacteriocin production was switched off. Environmental stress due to limitations in sugar or complex nutrients did not affect the early shut-off mechanism or the specific bacteriocin production. However, bacteriocin stability decreased or increased at low levels of sugar or complex nutrients, respectively.  相似文献   

18.
Barley isolate Lactococcus lactis M30 produces an antimicrobial proteinaceous activity, which at least under laboratory conditions was shown to target beer spoiling lactic acid bacteria, including Lactobacillus brevis BSH9. The aim of this study was to investigate the application of this antibacterial activity at various stages of the brewing process and in packaged beer. Lactococcus lactis M30 was shown to produce the antimicrobial activity during growth under specific conditions in fortified unhopped wort. However, this activity was lost during wort boiling and yeast fermentation. When the bacteriocin was added directly to beer it retained in vitro activity following pasteurisation, while it was also shown to inhibit growth in situ when pasteurised beer was challenged with low levels of the beer spoiling Lactobacillus brevis BSH9 culture. The capacity of the bacteriocin to prevent microbial spoilage of beer was tested at various temperatures over a period of seven weeks. Storage of bacteriocin‐containing beer at 30°C or room temperature resulted in a decrease in antimicrobial activity over time, but when refrigerated or frozen, this beer retained sufficient activity to be effective against Lactobacillus brevis BSH9.  相似文献   

19.
A rhizospheric isolate of a lactic acid bacterium, identified as Lactobacillus plantarum strain LR/14, was characterized to produce a bacteriocin. A supernatant from 20h culture growth was used as the source of bacteriocin. The antimicrobial compound showed remarkable stability at high temperatures (100°C for 30 min and 121°C for 15 min under 15 psi pressure) and to the presence of organic solvents, detergents and surfactants. It was also active in the pH regime of pH 2.0–6.0. Moreover, the compound was stable under different storage temperatures as tested up to 24 months. While antimicrobial function was not lost by catalase or β-glycerophosphate treatment, the same was sensitive to a number of proteolytic enzymes. The crude preparation inhibited not only related strains but also other gram-positive and gram-negative bacteria, such as Staphylococcus aureus, Listeria monocytogenes and urogenic E. coli. Bacteriocinogenic activity co-migrated as a single protein band on tricine-SDS-PAGE with molecular mass of ~3.6 kDa.  相似文献   

20.
Detection and characterization of bacteriocin production by Lactobacillus plantarum strain J23, recovered from a grape must sample in Spain, have been carried out. Bacteriocin activity was degraded by proteolytic enzymes (trypsin, alfa-chymotrypsin, papaine, protease, proteinase K and acid proteases), and it was stable at high temperatures (121 degrees C, 20min), in a wide range of pH (1-12), and after treatment with organic solvents. L. plantarum J23 showed antimicrobial activity against Oenococcus oeni, and a range of Lactobacillus and Pediococcus species. Bacteriocin production was detected in liquid media only when J23 was cocultivated with some inducing bacteria, and induction took place when intact cells or 55 degrees C heated cells of the inducer were cocultivated with J23, but not with their autoclaved cells. Bacteriocin activity of J23 was not induced by high initial J23 inocula, and it was detected in cocultures during the exponential phase. The presence of ethanol or acidic pH in the media reduced bacteriocin production in the cocultures of J23 with the inducing bacteria. The presence of plantaricin-related plnEF and plnJ genes was detected by PCR and sequencing. Nevertheless, negative results were obtained for plnA, plnK, plNC8, plS and plW genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号