首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu H  Zhang Y  Wang J  Wang D  Zhou C  Cai Y  Qian X 《Analytical chemistry》2006,78(18):6614-6621
The mass spectrometry-based methods with a stable isotope as the internal standard in quantitative proteomics have been developed quickly in recent years. But the use of some stable isotope reagents is limited by the relative high price and synthetic difficulties. We have developed a new method for quantitative proteomics research by using metal element chelated tags (MECT) coupled with mass spectrometry. The bicyclic anhydride diethylenetriamine-N,N,N',N' ',N' '-pentaacetic acid (DTPA) is covalently coupled to primary amines of peptides, and the ligand is then chelated to the rare earth metals Y and Tb. The tagged peptides are mixed and analyzed by LC-ESI-MS/MS. Peptides are quantified by measuring the relative signal intensities for the Y and Tb tag pairs in MS, which permits the quantitation of the original proteins generating the corresponding peptides. The protein is then identified by the corresponding peptide sequence from its MS/MS spectrum. The MECT method was evaluated by using standard proteins as model sample. The experimental results showed that metal chelate-tagged peptides chromatographically coeluted successfully during the reversed-phase LC analysis. The relative quantitation results were accurate for proteins using MECT. DTPA modification of the N-terminal of peptides promoted cleaner fragmentation (only y-series ions) in mass spectrometry and improved the confidence level of protein identification. The MECT strategy provides a simple, rapid, and economical alternative to current mass tagging technologies available.  相似文献   

2.
Proteolysis combined with O(18) labeling emerged recently as a powerful tool for quantitation of proteins for which suitable internal standards cannot be produced using molecular biology methods. Several recent reports suggested that acid-catalyzed O(18) labeling may be superior to the commonly accepted enzymatic protocol, as it may allow more significant spacing between the isotopic clusters of labeled and unlabeled peptides, thereby eliminating signal interference and enhancing the quality of quantitation. However, careful examination of this procedure reveals that the results of protein quantitation assisted by acid-catalyzed O(18) labeling are highly peptide-dependent. The inconsistency was found to be caused by deamidation of Asn, Gln, and carbamidomethylated Cys residues during prolonged exposure of the proteolytic fragments to the acidic environment of the labeling reaction, which translates into a loss in signal for these peptides. Taking deamidation into account leads to a significant improvement in the consistency of quantitation across a range of different proteolytic fragments.  相似文献   

3.
A new method for proteolytic stable isotope labeling is introduced to provide quantitative and concurrent comparisons between individual proteins from two entire proteome pools or their subfractions. Two 18O atoms are incorporated universally into the carboxyl termini of all tryptic peptides during the proteolytic cleavage of all proteins in the first pool. Proteins in the second pool are cleaved analogously with the carboxyl termini of the resulting peptides containing two 16O atoms (i.e., no labeling). The two peptide mixtures are pooled for fractionation and separation, and the masses and isotope ratios of each peptide pair (differing by 4 Da) are measured by high-resolution mass spectrometry. Short sequences and/or accurate mass measurements combined with proteomics software tools allow the peptides to be related to the precursor proteins from which they are derived. Relative signal intensities of paired peptides quantify the expression levels of their precursor proteins from proteome pools to be compared, using an equation described in the paper. Observation of individual (unpaired) peptides is mainly interpreted as differential modification or sequence variation for the protein from the respective proteome pool. The method is evaluated here in a comparison of virion proteins for two serotypes (Ad5 and Ad2) of adenovirus, taking advantage of information already available about protein sequences and concentrations. In general, proteolytic 18O labeling enables a shotgun approach for proteomic studies with quantitation capability and is proposed as a useful tool for comparative proteomic studies of very complex protein mixtures.  相似文献   

4.
Kim YJ  Zhan P  Feild B  Ruben SM  He T 《Analytical chemistry》2007,79(15):5651-5658
The reproducibility of a given method for relative quantitation governs the reliability of liquid chromatography-mass spectrometry (LC-MS) based differential analysis in proteomic studies. Understanding the noise level introduced from biological, chemical, and instrumental sources not only helps to determine the experimental design but also aids in assessing the reliability of expression ratios used for quantitation. Here we present a reproducibility assessment method for relative quantitation based on the intensity ratio distribution of common features in LC-MS replicates. This method applies to both decoupled (label-free quantitation) and coupled (label-dependent quantitation) methods. Aligning the features of LC-MS maps directly for the decoupled method or by matching an LC-MS map and its virtual map for the coupled method results in a list of common features for replicate samples. We find that the ratio distribution of the common features successfully indicates the reproducibility of each experiment prior to MS/MS peptide sequencing in three different quantitation strategies: decoupled, coupled isotope-coded affinity tag, and coupled stable isotope labeling of amino acids in cell culture experiments.  相似文献   

5.
Many software tools have been developed for analyzing stable isotope labeling (SIL)-based quantitative proteomic data using data dependent acquisition (DDA). However, programs for analyzing SIL-based quantitative proteomics data obtained with data independent acquisition (DIA) have yet to be reported. Here, we demonstrated the development of a new software for analyzing SIL data using the DIA method. Performance of the DIA on SYNAPT G2MS was evaluated using SIL-labeled complex proteome mixtures with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10) and compared with the DDA on linear ion trap (LTQ)-Orbitrap MS. The DIA displays relatively high quantitation accuracy for peptides cross all intensity regions, while the DDA shows an intensity dependent distribution of H/L ratios. For the three proteome mixtures, the number of detected SIL-peptide pairs and dynamic range of protein intensities using DIA drop stepwise, whereas no significant changes in these aspects using DDA were observed. The new software was applied to investigate the proteome difference between mouse embryonic fibroblasts (MEFs) and MEF-derived induced pluripotent stem cells (iPSCs) using (16)O/(18)O labeling. Our study expanded the capacities of our UNiquant software pipeline and provided valuable insight into the performance of the two cutting-edge MS platforms for SIL-based quantitative proteomic analysis today.  相似文献   

6.
A novel stable-isotope labeling approach for identification of phosphopeptides that utilizes adenosine triphosphate, in which four oxygen-16 atoms attached to the terminal phosphate group are substituted with oxygen-18 [gamma((18)O4)-ATP], has been developed. The ability to use gamma((18)O4)-ATP to monitor phosphorylation modification within various proteins was conducted by performing in vitro kinase reactions in the presence of a 1:1 mixture of gamma((18)O4)-ATP and normal isotopic abundance ATP (ATP). After tryptic digestion, the peptides were analyzed using mass spectrometry (MS). Phosphorylated peptides are easily recognized within the MS spectrum owing to the presence of doublets separated by 6.01 Da; representing versions of the peptide modified by ATP and gamma((18)O4)-ATP. Standard peptides phosphorylated using gamma((18)O4)-ATP via in vitro kinase reactions showed no exchange loss of (18)O with (16)O. The identity of these doublets as phosphorylated peptides could be readily confirmed using tandem MS. The method described here provides the first direct stable-isotope labeling method to definitely detect phosphorylation sites within proteins.  相似文献   

7.
Differential labeling of peptides via the use of the 18O-water proteolytic labeling method has been widely adopted for quantitative shotgun proteomics studies due to its simplicity and low reagent costs. In this report, the use of immobilized trypsin in the initial digestion step, in addition to the initial digestion step, is explored as a means to minimize postlabeling back exchange of 18O-labeled peptides into the 16O form when multidimensional peptide separation methods (here, isoelectric focusing of peptides) are incorporated into the sample workflow. Examples are shown with a mixture of standard proteins and a sample from an ongoing clinical proteomics study.  相似文献   

8.
The accuracy in quantitative analysis of N-linked glycopeptides and glycosylation site mapping in cancer is critical to the fundamental question of whether the aberration is due to changes in the total concentration of glycoproteins or variations in the type of glycosylation of proteins. Toward this goal, we developed a lectin-directed tandem labeling (LTL) quantitative proteomics strategy in which we enriched sialylated glycopeptides by SNA, labeled them at the N-terminus by acetic anhydride ((1)H(6)/(2)D(6)) reagents, enzymatically deglycosylated the differentially labeled peptides in the presence of heavy water (H(2)(18)O), and performed LC/MS/MS analysis to identify glycopeptides. We successfully used fetuin as a model protein to test the feasibility of this LTL strategy not only to find true positive glycosylation sites but also to obtain accurate quantitative results on the glycosylation changes. Further, we implemented this method to investigate the sialylation changes in prostate cancer serum samples as compared to healthy controls. Herein, we report a total of 45 sialylated glycopeptides and an increase of sialylation in most of the glycoproteins identified in prostate cancer serum samples. Further quantitation of nonglycosylated peptides revealed that sialylation is increased in most of the glycoproteins, whereas the protein concentrations remain unchanged. Thus, LTL quantitative technique is potentially an useful method for obtaining simultaneous unambiguous identification and reliable quantification of N-linked glycopeptides.  相似文献   

9.
Shi Y  Yao X 《Analytical chemistry》2007,79(22):8454-8462
The first method of isotopic substitution of a nonbridging oxygen atom in pre-existing phosphates on peptides is reported, solving a long-standing, challenging issue in the sample preparation of phosphopeptides. Peptidyl phosphates, phosphate groups on phosphopeptides, are converted to phosphoramidates with carbodiimide assistance. Acid-catalyzed hydrolysis of the newly formed phosphoramidates incorporates one oxygen atom from H2(16)O or H2(18)O, producing peptidyl phosphates-16O1 or -18O1, respectively. The oxygen labels are stable under common separation and analysis conditions. This labeling method causes minimal structural alteration to peptidyl phosphates and allows the direct application of established phosphate-specific marker ions to the mass spectrometric analysis of differentially labeled phosphopeptide pairs. Using phosphotyrosinyl peptides as model analytes, the characteristic 16O1- and 18O1-labeled phosphotyrosine immonium ions at m/z 216.043 and 218.047 are used for developing a method of phosphopeptide quantitation that is independent of the amino acid sequence of the peptides. From analysis by tandem parallel fragmentation mass spectrometry, it is clear that the phosphate-specific marker ions authentically inherit the quantitative information from precursor phosphopeptides. The dynamic range for relative quantitation of differentially labeled phosphopeptides is at least 2 orders of magnitude for experiments run on a quadrupole time-of-flight mass spectrometer. The use of 16O1 and 18O1 labeling for counting the number of phosphate groups on peptides is also demonstrated.  相似文献   

10.
Wa C  Cerny RL  Hage DS 《Analytical chemistry》2006,78(23):7967-7977
A method was developed for characterizing immobilization sites on a protein based on stable isotope labeling and MALDI-TOF mass spectrometry. The model for this work was human serum albumin (HSA) immobilized onto silica by the Schiff base method. The immobilized HSA was digested by various proteolytic enzymes in the presence of normal water, while soluble HSA was digested in (18)O-enriched water for use as an internal standard. These two digests were mixed and analyzed, with the (18)O/(16)O ratio for each detected peptide then being measured. Several peptides in the tryptic, Lys-C, and Glu-C digests gave significantly higher (18)O/(16)O ratios than other peptides in the same digests, implying their involvement in immobilization. Analysis of these results led to identification of the N-terminus and several lysines as likely immobilization sites for HSA (e.g., K4, K41, K190, K225, K313, and K317). It was also possible from these results to quantitatively rank these sites in terms of the relative degree to which each might take part in immobilization. This method is not limited to HSA and silica but can be used with other proteins and supports.  相似文献   

11.
Comparing the relative abundance of each protein present in two or more complex samples can be accomplished using isotope-coded tags incorporated at the peptide level. Here we describe a chemical labeling strategy for the incorporation of a single isotope label per peptide, which is completely sequence-independent so that it potentially labels every peptide from a protein including those containing posttranslational modifications. It is based on a gentle chemical labeling strategy that specifically labels the N-terminus of all peptides in a digested sample with either a d5- or d0-propionyl group. Lysine side chains are blocked by guanidination prior to N-terminal labeling to prevent the incorporation of multiple labels. In this paper, we describe the optimization of this N-terminal isotopic tagging strategy and validate its use for peptide-based protein abundance measurements with a 10-protein standard mixture. Using a results-driven strategy, which targets proteins for identification based on MALDI TOF-MS analysis of isotopically labeled peptide pairs, we also show that this labeling strategy can detect a small number of differentially expressed proteins in a mixture as complex as a yeast cell lysate. Only peptides that show a difference in relative abundance are targeted for identification by tandem MS. Despite the fact that many peptides are quantitated, only those few showing a difference in abundance are targeted for protein identification. Proteins are identified by either targeted LC-ES MS/MS or MALDI TOF/TOF. Identifications can be accomplished equally well by either technique on the basis of multiple peptides. This increases the confidence level for both identification and quantitation. The merits of ES MS/MS or MALDI MS/MS for protein identification in a results-driven strategy are discussed.  相似文献   

12.
13.
Cell-to-cell signaling peptides play important roles in neurotransmission, neuromodulation, and hormonal signaling. Significant progress has been achieved in qualitative investigations of signaling peptides in the nervous system using single cell matrix-assisted laser desorption/ionization mass spectrometry. However, quantitative information about signaling peptides is difficult to obtain with this approach because only small amounts of analytes are available for analysis. Here we describe several methods for quantitative microanalysis of peptides in individual Aplysia californica neurons and small pieces of tissue. Stable isotope labeling with d0- and d4-succinic anhydride and iTRAQ reagents has been successfully adopted for relative quantitation of nanoliter volume samples containing the Aplysia insulin C beta peptide. Comparative analysis of the C beta peptide release site, the upper labial nerve, and its synthesis location, the F- and C-clusters, shows that the release site possesses almost three times more of this compound. The method of standard addition permits absolute quantitation of the physiologically active neuropeptide cerebrin from small structures, including nerves and neuronal clusters, in the femtomole range with a limit of detection of 19 fmol. The simplicity of these methods and the commercial availability of the reagents allow quantitative measurements from a variety of small-volume biological samples.  相似文献   

14.
Zhang W  Wang H  Tang H  Yang P 《Analytical chemistry》2011,83(12):4975-4981
Stable isotopic labeling coupled with mass spectrometry analysis is a promising method of detecting quantitative variations in glycans, which may result in aberrant glycosylation in many disorders and diseases. Although various isotopic labeling methods have been used for relative glycan quantitation, enzymatic (18)O labeling, which offers advantages for glycomics similar to those by protease-catalyzed (18)O labeling for proteomics, has not been developed yet. In this study, endoglycosidase incorporated (18)O into the N-glycan reducing end in (18)O-water as N-glycans were released from glycoproteins, rendering glycan reducing-end (18)O labeling (GREOL) a potential strategy for relative glycan quantitation. This proposed method provided good linearity with high reproducibility within 2 orders of magnitude in dynamic range. The ability of GREOL to quantitatively discriminate between isomeric hybrid N-glycans and complex N-glycans in glycoproteins was validated due to the distinct substrate specificities of endoglycosidases. GREOL was also used to analyze changes in human serum N-glycans associated with hepatocellular carcinoma.  相似文献   

15.
(18)O-labeling of peptides is a technique widely and routinely applied in the protein chemistry laboratories. The rate of (18)O incorporation at the carboxyl terminus of peptides via enzyme-catalyzed oxygen exchange fluctuates from peptide to peptide. This fluctuation is mostly attributed to enzyme-substrate different affinity. The final distributions of the (18)O(0)-, (18)O(1)-, and (18)O(2)-tagged peptides remain unpredictable though usually constrained to binomial proportions. It is proved here that this constraint can sometimes be a poor model. A more general model is then derived which predicts linear paths for digestion in H(2)(18)O-enriched water while confining binomial proportions to postdigestion labeling. Both subderived models are simple in structure and relevant for the current software development in the analysis of quantitative shotgun proteomics data. Accuracy and time dependency are examined and compared with actual labeled-digest data.  相似文献   

16.
Determination of site-specific changes in the levels of protein phosphorylation in mammals presents a formidable analytical challenge. Here, we demonstrate a strategy for such analyses utilizing a combination of stable isotope chemical labeling and tandem mass spectrometry. Phosphoproteins of interest are isolated from two sets of animals that have undergone differential drug treatments, separated by SDS-PAGE, excised, and subjected to in-gel enzymatic digestion. Using a simple chemical labeling step, we introduce stable, isotopically distinct mass tags into each of the two sets of peptides that originate from the samples under comparison, mix the samples, and subject the resulting mixture to a procedure based on our previously reported hypothesis-driven multistage MS (HMS-MS) method (Chang, E. J.; Archambault, V.; McLachlin, D. T.; Krutchinsky, A. N.; Chait, B. T. Anal. Chem. 2004, 76, 4472-4483). The method takes advantage of the dominant loss of H3PO4 during MS/MS from singly charged phosphopeptide ions produced by matrix-assisted laser desorption/ionization (MALDI) in the ion trap mass spectrometer. In the present work, quantitation is achieved by isolating the range of m/z values that include both isotopic forms of the putative phosphopeptide and measuring the relative intensities of the two resulting -98-Da fragment ion peaks. This MS/MS measurement can be repeated on the same MALDI sample for all potential phosphopeptide ion pairs that we hypothesize might be produced from the protein under study. Use of MS/MS for quantitation greatly increases the sensitivity of the method and allows us to measure relatively low levels of phosphorylation, phosphopeptides, or both that are not easily observable by single-stage MS. We apply the current method to the determination of changes in the levels of phosphorylation in DARPP-32 from the mouse striatum upon treatment of animals with psychostimulant drugs.  相似文献   

17.
A new quantitative cysteinyl-peptide enrichment technology (QCET) was developed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomics that use stable-isotope labeling techniques combined with high-resolution liquid chromatography (LC)-mass spectrometry (MS). This approach involves (18)O labeling of tryptic peptides, high-efficiency enrichment of cysteine-containing peptides, and confident protein identification and quantification using the accurate mass and time tag strategy. Proteome profiling of na?ve and in vitro-differentiated human mammary epithelial cells using QCET resulted in the identification and quantification of 603 proteins in a single LC-Fourier transform ion cyclotron resonance MS analysis. Advantages of this technology include the following: (1) a simple, highly efficient method for enriching cysteinyl-peptides; (2) a high-throughput strategy suitable for extensive proteome analysis; and (3) improved labeling efficiency for better quantitative measurements. This technology enhances both the functional analysis of biological systems and the detection of potential clinical biomarkers.  相似文献   

18.
The extension of quantitation methods for small peptides to ions above 5 kDa, and eventually to global quantitative proteomics of intact proteins, will require extensive refinement of current analytical approaches. Here we evaluate postgrowth Cys-labeling and 14N/15N metabolic labeling strategies for determination of relative protein expression levels and their posttranslational modifications using top-down mass spectrometry (MS). We show that intact proteins that are differentially alkylated with acrylamide (+71 Da) versus iodoacetamide (+57 Da) have substantial chromatographic shifts during reversed-phase liquid chromatography separation (particularly in peak tails), indicating a requirement for stable isotopes in alkylation tags for top-down MS. In the 14N/15N metabolic labeling strategy, we achieve 98% 15N incorporation in yeast grown 10 generations under aerobic conditions and determine 50 expression ratios using Fourier transform ion cyclotron resonance MS in comparing these cells to anaerobically grown control (14N) cells. We devise quantitative methods for top-down analyses, including a correction factor for accurate protein ratio determination based upon the signal-to-noise ratio. Using a database of 200 yeast protein forms identified previously by top-down MS, we verify the intact mass tag concept for protein identification without tandem MS. Overall, we find that top-down MS promises work flows capable of large-scale proteome profiling using stable isotope labeling and the determination of >5 protein ratios per spectrum.  相似文献   

19.
Methods for the absolute quantification of a membrane protein are described using isotopically labeled or unlabeled synthetic peptides as standards. Synthetic peptides are designed to mimic peptides that are cleaved from target analyte proteins by proteolytic or chemical digestion, and the peptides selected serve as standards for quantification by LC/MS/MS on a triple quadrupole mass spectrometer. The technique is complementary to relative quantification techniques in widespread use by providing absolute quantitation of selected targets with greater sensitivity, dynamic range, and precision. Proteins that are found to be of interest by global proteome searches can be selected as targets for quantitation by the present method. This method has a much shorter analytical cycle time (minutes versus hours for the global proteome experiments), making it well suited for high-throughput environments. The present approach using synthetic peptides as standards, in conjunction with proteolytic or chemical cleavage of target proteins, allows mass spectrometry to be used as a highly selective detector for providing absolute quantification of proteins for which no standards are available. We demonstrate that quantification is simple and reliable for the integral membrane protein rhodopsin with reasonable recoveries for replicate experiments using low-micromolar solutions of rhodopsin from rod outer segments.  相似文献   

20.
Bao H 《Analytical chemistry》2006,78(1):304-309
In the laboratory, barite precipitated from a solution with a high nitrate/sulfate ratio can have a significant amount (up to 28% by weight) of nitrate occluded in barite crystals that cannot be simply washed away. The impurity poses a serious problem for an accurate measurement of the oxygen isotope compositions for atmospheric sulfate, since atmospheric nitrate bears extremely positive Delta17O and delta18O values. Currently available methods for removing the occluded nitrate are either ineffective or not tested for oxygen isotope exchange. Here, I report a DTPA (a chelating solution) dissolution and reprecipitation (DDARP) method that is simple and effective in removing nitrate and other contaminants in barite. A series of barite dissolution and reprecipitation experiments that utilize 17O-anomalous solutions or barite crystals is conducted to examine the effect on oxygen isotopes during various treatments. It is established that no oxygen isotope exchange occurs between sulfate and water during DDARP treatment at two experimental temperatures (21 and 70 degrees C). Occlusion of DTPA itself in barite is negligible. Upon acidification, barite reprecipitation from a DTPA solution is quantitative (approximately 100%). Partially extracted barite may have slightly lower delta18O or delta34S values than the originals but no effect on Delta17O values. It is also demonstrated that heavily nitrate-contaminated barite samples are free of nitrate occlusion after two dissolution-reprecipitation cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号