首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于支持向量机的肿瘤分类特征基因选取   总被引:19,自引:0,他引:19  
依据基因表达谱有效建立肿瘤分类模型的关键在于准确找出决定样本类别的一组特征基因.针对该问题,在分析肿瘤基因表达谱特征的基础上,研究了肿瘤分类特征基因选取问题.首先,提出了一种新的类别可分性判据以滤除分类无关基因,并采用支持向量机作为分类器进行特征基因分类性能的检验.然后,采用两两冗余分析及基于支持向量机分类模型的灵敏度分析法进行冗余基因的剔除.以急性白血病亚型分类特征基因选取为例进行实验,结果表明了上述方法的可行性和有效性.  相似文献   

2.
基于遗传算法和支持向量机的肿瘤分子分类   总被引:1,自引:0,他引:1  
提出了一种基于遗传算法(GA)和支持向量机(SVM)的用于肿瘤分子分类和特征基因选择的新方法。该方法针对基因表达数据样本少维数高的特点,先根据基因的散乱度滤掉大量分类无关基因,而后使用相关性分析去除分类冗余基因,得到一个候选基因子集,用遗传算法搜索候选特征基因空间,发现在支持向量机分类器上具有好的分类性能的且含基因个数较少的特征子集。把这种GA/SVM方法应用到结肠癌和急性白血病基因表达谱,能选出多个取得较高分类精度的较小基因子集,实验结果表明了该方法的有效性。  相似文献   

3.
支持向量机的一种特征选取算法   总被引:1,自引:0,他引:1       下载免费PDF全文
支持向量机(Support Vector Machine,SVM)是一种有效的分类方法,其学习本质是通过对偶问题求解原问题,但是它不能直接获得特征重要性。提出一种新的特征选取算法,实验表明,该特征选取算法与一般特征选取算法(如F-Score算法)相比,对同一测试数据集计算的结果具有相同的降序排列结果,而且有更好的特征刻画量化指标,分界线更明显,表明新的特征选取算法具有更佳的合理性。  相似文献   

4.
基于结肠癌基因表达数据,运用信息科学的方法和技术建立结肠癌的预测分类模型,对结肠癌的识别具有重要意义。在建立模型的过程中,如何能够有效的排除噪声基因进而挑选出分类特征基因对结肠癌预测的准确性有着非常重要的影响。针对该类问题,这篇文章提出了一种新的特征基因选取方法,并以支持向量机作为分类器建立结肠癌分类预测模型,最后以结肠癌的基因表达谱作为实验数据进行了实验,实验结果表明上述方法的可行性和有效性.  相似文献   

5.
为解决设备使用预测的问题,给出支持向量机(SVM)的改进算法及基于距离的模式识别算法。使用训练数据得到SVM的最优分类超平面,运用确认数据的特征集作为分类标准预测分类结果,将分类结果与概率相结合作为模式识别算法的输入,算法输出为某个固定模式。实验结果表明,与传统算法相比,以改进的SVM分类结果为输入的模式识别算法准确性更高,可广泛应用在二值输入的模式识别算法中。  相似文献   

6.
基于结肠癌基因表达数据,运用信息科学的方法和技术建立结肠癌的预测分类模型,对结肠癌的识别具有重要意义。在建立模型的过程中,如何能够有效的排除噪声基因进而挑选出分类特征基因对结肠癌预测的准确性有着非常重要的影响。针对该类问题,这篇文章提出了一种新的特征基因选取方法,并以支持向量机作为分类器建立结肠癌分类预测模型,最后以结肠癌的基因表达谱作为实验数据进行了实验,实验结果表明上述方法的可行性和有效性。  相似文献   

7.
基于基因表达谱提出了一种选取特征基因并使用多类支持向量机(MSVM)进行肿瘤亚型识别的方法。就小圆蓝细胞瘤(SRBCT)的亚型识别问题,以组间和组内平方和比率(BSS/WSS)作为衡量基因分类重要性的标准,据此选择基因构造若干MSVM模型,由分类错误率确定了含25个基因的特征集合,并利用基于相关距离的冗余分析方法去除冗余,得到15个特征基因。基于该特征子集构造的MSVM在测试集上取得100%的预测准确率。与相关文献的比较表明了该方法的有效性和可行性。  相似文献   

8.
支持向量机是重要的机器学习方法之一,已成功解决了许多实际的分类问题。围绕如何提高支持向量机的分类精度与训练效率,以分类过程为主线,主要综述了在训练支持向量机之前不同的特征选取方法与学习策略。在此基础上,比较了不同的特征选取方法SFS,IWSS,IWSSr以及BARS的分类精度,分析了主动学习策略与支持向量机融合后获得的分类器在测试集上的分类精度与正确率/召回率平衡点两个性能指标。实验结果表明,包装方法与过滤方法相结合的特征选取方法能有效提高支持向量机的分类精度和减少训练样本量;在标签数据较少的情况下,主动学习能达到更好的分类精度,而为了达到相同的分类精度,被动学习需要的样本数量必须要达到主动学习的6倍。  相似文献   

9.
基于核函数的支持向量机样本选取算法   总被引:2,自引:0,他引:2  
使用支持向量机求解大规模数据分类需要较大内存来存储Hessian矩阵,而矩阵的大小则依赖于样本数1,因此在一定程度上导致支持向量机分类效率及质量难以提高.考虑到只有成为支持向量的样本才对决策函数起作用,为了减少训练样本时所需空间及时间开销,提高支持向量机分类效率与质量,提出了一种基于核函数的样本选取算法.该算法通过选取最大可能成为支持向量的样本,以达到减少训练时存储Hessian矩阵所需空间及时间开销的目的.实验结果表明,该算法所筛选出的样本不仅可以提高样本训练准确率,而且可以提高分类计算速度和减少存储空间开销.  相似文献   

10.
基于支持向量机的微阵列基因表达数据分析方法   总被引:5,自引:0,他引:5  
DNA微阵列技术,使人们可以同时观测成千上万个基因的表达水平,对其数据的分析已成为生物信息学研究的焦点.针对微阵列基因表达数据维数高、样本小、非线性的特点,设计了一种基于支持向量机的基因表达数据分类识别方法,该方法采用信噪比进行基因特征提取,运用支持向量机的不同核函数进行性能测试,针对几个典型数据集的实验表明其识别效果良好.  相似文献   

11.
基于支持向量机的纸张缺陷图像分类识别   总被引:1,自引:0,他引:1  
袁浩  付忠良  程建  阮波 《计算机应用》2008,28(2):330-332,
根据支持向量机(SVM)在小样本、高维模式分类中具有的优良分类性能,提出将支持向量机应用于实际的纸张缺陷分类。针对三种现场易出现的缺陷,通过对缺陷图像进行预处理、特征选择,再利用SVM进行分类,利用交叉验证进行参数和模型选取,取得了较好的分类效果,为纸张缺陷的分类指出一种可行的方法。  相似文献   

12.
章少平  梁雪春 《计算机应用》2015,35(5):1306-1309
传统的分类算法大都建立在平衡数据集的基础上,当样本数据不平衡时,这些学习算法的性能往往会明显下降.对于非平衡数据分类问题,提出了一种优化的支持向量机(SVM)集成分类器模型,采用KSMOTE和Bootstrap对非平衡数据进行预处理,生成相应的SVM模型并用复合形算法优化模型参数,最后利用优化的参数并行生成SVM集成分类器模型,采用投票机制得到分类结果.对5组UCI标准数据集进行实验,结果表明采用优化的SVM集成分类器模型较SVM模型、优化的SVM模型等分类精度有了明显的提升,同时验证了不同的bootNum取值对分类器性能效果的影响.  相似文献   

13.
基于改进的F-score与支持向量机的特征选择方法   总被引:1,自引:0,他引:1  
将传统F-score度量样本特征在两类之间的辨别能力进行推广,提出了改进的F-score,使其不但能够评价样本特征在两类之间的辨别能力,而且能够度量样本特征在多类之间的辨别能力大小。以改进的F-score作为特征选择准则,用支持向量机(SVM)评估所选特征子集的有效性,实现有效的特征选择。通过UCI机器学习数据库中六组数据集的实验测试,并与SVM、PCA+SVM方法进行比较,证明基于改进F-score与SVM的特征选择方法不仅提高了分类精度,并具有很好的泛化能力,且在训练时间上优于PCA+SVM方法。  相似文献   

14.
孙辉  许洁萍  刘彬彬 《计算机应用》2015,35(6):1753-1756
针对不同特征向量下选择最优核函数的学习方法问题,将多核学习支持向量机(MK-SVM)应用于音乐流派自动分类中,提出了将最优核函数进行加权组合构成合成核函数进行流派分类的方法。多核分类学习能够针对不同的声学特征采用不同的最优核函数,并通过学习得到各个核函数在分类中的权重,从而明确各声学特征在流派分类中的权重,为音乐流派分类中特征向量的分析和选择提供了一个清晰、明确的结果。在ISMIR 2011竞赛数据集上验证了提出的基于多核学习支持向量机(MKL-SVM)的分类方法,并与传统的基于单核支持向量机的方法进行了比较分析。实验结果表明基于MKL-SVM的音乐流派自动分类准确率比传统单核支持向量机的分类准确率提高了6.58%,且该方法与传统的特征选择结果比较,更清楚地解释了所选择的特征向量对流派分类的影响大小,通过选择影响较大的特征组合进行分类,分类结果也有了明显的提升。  相似文献   

15.
黄晓娟  张莉 《计算机应用》2015,35(10):2798-2802
为处理癌症多分类问题,已经提出了多类支持向量机递归特征消除(MSVM-RFE)方法,但该方法考虑的是所有子分类器的权重融合,忽略了各子分类器自身挑选特征的能力。为提高多分类问题的识别率,提出了一种改进的多类支持向量机递归特征消除(MMSVM-RFE)方法。所提方法利用一对多策略把多类问题化解为多个两类问题,每个两类问题均采用支持向量机递归特征消除来逐渐剔除掉冗余特征,得到一个特征子集;然后将得到的多个特征子集合并得到最终的特征子集;最后用SVM分类器对获得的特征子集进行建模。在3个基因数据集上的实验结果表明,改进的算法整体识别率提高了大约2%,单个类别的精度有大幅度提升甚至100%。与随机森林、k近邻分类器以及主成分分析(PCA)降维方法的比较均验证了所提算法的优势。  相似文献   

16.
李旻松  段琢华 《计算机应用》2011,31(9):2429-2431
隐含语意索引(LSI)是一个能有效捕获文档中词的隐含语意特征的方法。然而,用该方法选择的特征空间对文本分类来说可能不是最适合的,因为这种方法按照词的变化排序特征,而没有考虑到分类能力。支持向量机(SVM)高度的泛化能力使它特别适用于高维数据例如文档的分类。为此提出基于支持向量机的特征提取方法用于选择适于分类的LSI特征。该方法利用SVM高度泛化的分类能力, 通过使用在每一个规则下训练的分类器的参数对第k个特征对反向平方分解面的贡献w2k的值进行估计。实验表明当需要比LSI更少的训练和测试时间时,该方法能够以更为紧凑的表示方式提高分类性能。  相似文献   

17.
基于支持向量机的图像型火灾探测算法   总被引:1,自引:0,他引:1  
针对传统火灾探测方法存在的不足,提出了一种基于支持向量机的图像型火灾探测算法,并与基于神经网络的图像型火灾探测算法做了比较。实验结果表明支持向量机克服了神经网络容易过学习、容易陷入局部极小点等不足,同时避免了人为设定特征量识别阈值时需要做大量实验和统计的复杂性。基于支持向量机的图像型火灾探测算法识别准确率高,对于小样本、高维数、非线性的分类问题效果显著。  相似文献   

18.
直推式支持向量机(TSVM)是在利用有标签样本的同时,考虑无标签样本对分类器的影响,并且结合支持向量机算法,实现一种高效的分类算法。它在包含少量有标签样本的训练集和大量无标签样本的测试集上,具有良好的效果。但是它有算法时间复杂度比较高,需要预先设置正负例比例等不足。通过对原有算法的改进,新算法在时间复杂度上明显下降,同时算法效果没有明显的影响。  相似文献   

19.
基于小波变换和支持向量机的音频分类   总被引:2,自引:0,他引:2       下载免费PDF全文
音频特征提取是音频分类的基础,而音频分类又是内容的音频检索的关键。综合分析了语音和音乐的区别性特征,提出一种基于小波变换和支持向量机的音频特征提取和分类的方法,用于纯语音、音乐、带背景音乐的语音以及环境音的分类,并且评估了新特征集合在SVM分类器上的分类效果。实验结果表明,提出的音频特征有效、合理,分类性能较好。  相似文献   

20.
支持向量机参数是影响其性能的重要因素,为了进一步提高支持向量机分类精度和泛化能力,提出了基于差分进化算法的SVM参数选择。以样本误判率最小为优化准则,利用差分进化算法对SVM参数进行优化选择。实验结果表明,利用差分进化算法选择SVM参数,加快了参数搜索的速度,提高了SVM分类精度,该方法具有良好的鲁棒性和较强的全局寻优能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号