首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
A procedure for calculating the flow depletion from a finite length of a stream induced by a pumping well in an adjacent aquifer is developed. Four management cases of finite length of the stream including a basic case are considered. A “basic flow depletion factor” is defined, in terms of which the flow depletion factors for all cases are expressed. The basic flow depletion factor is twice the Hantush M function. A computationally simple and accurate practical approximation of the basic flow depletion factor is presented that encompasses the full practical range of the solutions. Using this approximation, an optimization method is proposed for the estimation of the aquifer hydraulic diffusivity and effective distance from the pumping well to the line of recharge from the measured temporal variation of stream flow depletion between two sections. During optimization, repeated computation of stream flow depletion is required; use of the proposed approximation simplifies the computation.  相似文献   

2.
Analytical but approximate methods are developed for obtaining pumping induced rate and volume of stream flow depletion, which can account for unsteady (any variation) pumping discharge and are also applicable for intermittent pumping and recovery. Exact analytical solutions for a sinusoidal variation in the pumping discharge are proposed; the proposed methods are verified using these solutions. The proposed methods use ramp kernels that give results superior to the conventional convolution. These ramp kernels assume the linear variation in pumping discharge between the two consecutive discretized points as opposed to the uniform variation assumed in the conventional convolution. The proposed solutions are applicable for homogeneous and isotropic aquifers hydraulically connected to streams.  相似文献   

3.
A computationally simple semianalytical model is proposed for calculating the drawdown due to pumping a well tapping two aquifers separated by an aquiclude with no cross flow. The new model can take into account the transient pumping discharge. Equations are proposed for calculating the transient contributions of the aquifers to the pumped discharge and drawdowns in aquifers. The residual drawdowns in the aquifers and the aquifer contributions during recovery period can also be obtained using the proposed model. Based upon a similar principle, another model is also developed that can consider the effect of the well storage. The proposed models can be used to calculate drawdowns neglecting or considering the well storage, in the case of transient pumping from two aquifers having different values of transmissivity and storage coefficient. It is hoped that the new models would be of help to the field engineers and practitioners.  相似文献   

4.
Analytical expressions for rate and volume of flow depletion of semipervious streams due to sinusoidal variation in pumping rate are obtained. An analytical but approximate method is developed for obtaining the rate and volume of stream flow depletion due to arbitrary unsteady pumping discharge. The method uses the ramp kernel and convolution. The use of ramp kernels permits linear interpolation between two consecutive discretized discharge values. The analytical equations for the ramp kernels for the rate and volume of stream flow depletion are derived. The proposed method is applicable for homogeneous and isotropic aquifers that are hydraulically connected to streams.  相似文献   

5.
A simple semianalytical model is proposed for calculating the drawdown due to pumping a well tapping two aquifers. The new model can take into account the transient pumping discharge and cross flow between the aquifers. The transient contributions of the aquifers to the pumped discharge can also be implicitly obtained using the model.  相似文献   

6.
This study derives a semianalytical solution for drawdown distribution during a constant-head test at a partially penetrating well in an unconfined aquifer. The constant-head condition is used to describe the boundary along the screen. In addition, a free-surface condition is used to delineate the upper boundary of the unconfined aquifer. The Laplace-domain solution is then derived using separation of variables and Laplace transform. This solution can be used to identify the aquifer parameters from the data of the constant-head test when integrated with an optimization scheme or to investigate the effects of vertical flow caused by the partially penetrating well and free-surface boundary in an unconfined aquifer.  相似文献   

7.
Flow Depletion of Semipervious Streams Due to Pumping   总被引:1,自引:0,他引:1  
Expressions for the rate and volume of flow depletion of semipervious streams due to pumping are presented in computationally simple forms. Analytical expressions have been proposed to take into account both partial penetration and semipervious bed and banks of the stream. Graphs suitable for engineering applications are presented for siting wells, and the effect of an intermittent pumping cycle on the rate and volume of stream flow depletion has also been discussed. The exclusive volume of flow depletion during a cycle is shown to vary with the selection of the end of the cycle.  相似文献   

8.
A semianalytical model is developed for computing drawdowns in and around a partially penetrating large diameter well. The new model can take into account an unsteady pumping discharge and thus drawdowns during recovery can be computed. This model can also yield the unsteady contributions from well and aquifer storages to the pumped discharge. While developing the model, the flow from the bottom of the well is also accounted.  相似文献   

9.
A procedure is proposed for calculating the spatial and temporal variation of drawdown due to pumping a well tapping two aquifers separated by an aquitard, using convolution and MODFLOW. It can take into account the unsteady pumping discharge and cross flow through the intervening aquitard. A discrete pulse kernel method based on superposition/convolution is used to account for the unsteady pumping discharge. The discrete pulse kernels are calculated using MODFLOW. The contributions of the aquifers to the pumped discharge are accounted implicitly and not required to be specified explicitly. Available numerical models (e.g., MODFLOW) require the aquifer contributions that are implicitly controlled, to be specified explicitly. The use of the suggested procedure is illustrated using examples. The contributions of the aquifers are found not in proportion to their transmissivities but vary with time, when the diffusivities of the aquifers are not equal. Applying the new procedure, the numerical models, such as MODFLOW can be used to correctly model the transient pumping from two aquifers with cross flow; thus, it opens up the possibility of numerically accounting for the aquifer heterogeneity while dealing with the flow to a well tapping two aquifers under a transient pumping, which would be otherwise difficult to account for analytically.  相似文献   

10.
Neglecting the effect of well radius may lead to a significant error in the predicted drawdown distribution near the pumping well area. New analytical solutions describing aquifer responses to a constant pumping or a constant head maintained at a finite-diameter well in a wedge-shaped aquifer are derived based on the image-well method and applicable to an arbitrarily located well in the system. The solutions are useful for quantifying groundwater exploitation from a wedge-shaped aquifer and for determining the hydrogeological parameters of a wedge-shaped aquifer in inverse problems.  相似文献   

11.
The approach by the author for modeling the large-diameter wells using MODFLOW is extended to the partially penetrating large-diameter wells. The temporal variation of drawdown due to a steady pumping is presented in the form of diagnostic curves for different penetration. These diagnostic curves can also be used to estimate the aquifer parameters from the observed drawdowns in a partially penetrating large-diameter well.  相似文献   

12.
  总被引:1,自引:0,他引:1  
Analytical expressions for ramp kernels (new kernels) for an improved convolution for obtaining aquifer responses, viz, groundwater head, rate, and cumulative volume of groundwater flow, to an arbitrary stage, are obtained. The use of the ramp kernels gives accurate aquifer responses and is superior to the conventional convolution in which numerical integration or pulse kernels are used. The extent of improvement in the results with the use of the ramp kernels is discussed and quantified for three examples, where the results are compared to analytical solutions. For the comparisons, the analytical solutions for linear and sinusoidal stream stages are derived. The use of the ramp kernels reproduces accurately the analytical solutions. The concept of ramp kernels can also be used for obtaining an accurate solution of convolution integrals observed in other fields.  相似文献   

13.
To withdraw large quantities of groundwater from the alluvial aquifers for various uses near riverbeds, radial collector (RC) wells are often preferable to the installation of several small diameter tube wells. In regions where rivers are not perennial or have low flow conditions during most part of the year, the RC wells are placed in the riverbed to obtain uninterrupted supply of naturally filtered groundwater through highly permeable saturated riverbed aquifers. Due to the complexities of flow, no exact analytical solution exists to provide steady state discharge drawdown relationship for RC well. Numerical model construction using finite difference or finite element method is quite cumbersome because of the radial orientation of laterals. To overcome these difficulties, in this study a steady state simulation model based on analytic element method (AEM) is developed to simulate the discharge-drawdown relation for RC well in an unconfined riverbed aquifer. In the model, line-sink elements are used to represent stream as well as radial laterals with specified conductance. The model is used to study the effects of different lateral configurations, hydraulic conductivity of riverbed aquifer, radius of influence and conductance of laterals on the well discharge, and consequent drawdown. Further based on the results of simulations using the AEM model, an approximate empirical equation is developed to obtain the discharge of RC well readily for design purpose. Further, the developed model has been applied to a field study and results are obtained for different plausible configurations of radial wells. The proposed methodology based on the application of AEM modeling tool, has been found to be efficient in constructing riverbed aquifer model with RC well. The proposed model is recommended in designing new collector well by providing minimum length of laterals for the sustained yield.  相似文献   

14.
Analytical solutions for groundwater head in the presence of subsurface drains are important in assessing the effectiveness of an existing drainage system under a probable extreme variation in the rate of recharge and designing a new drainage system. Generalized analytical solutions for groundwater head in inclined aquifers in the presence of parallel subsurface drains are obtained considering the transient rate of recharge as a power series (polynomial) function and depth-dependent rate of evapotranspiration. An appropriate function, new to analytical drainage studies, is used for correctly representing the depth-dependent rate of evapotranspiration. The solutions are obtained considering the practical situation of drains placed at shallow depth in a considerable depth of aquifer. Two conditions of large and small saturated thicknesses in comparison to the increase in groundwater head are considered. A mathematical criterion is proposed to distinguish between large and small saturated thicknesses. The analytical equations for discharge to drains for different cases considered are also obtained. The discharge equations used by prior investigators are found inappropriate.  相似文献   

15.
The space-time variation in contaminant concentration in unsteady flow in a homogeneous finite aquifer subjected to point source contamination is analytically derived under two conditions: (1) the flow velocity in the aquifer is of sinusoidal form; and (2) the flow velocity is an exponentially decreasing function. The analytical solution is illustrated using an example. Analytical solutions are perhaps most useful for benchmarking numerical codes and solutions.  相似文献   

16.
In this paper, unconfined porous medium is considered to drain vertically to an underlying fractured aquifer, which leads groundwater to a variable large diameter well blind to porous medium. Such cases are quite common in arid regions, where the geological layers have top to bottom sequence as quaternary sedimentary layer (porous-unconfined aquifer), weathered and/or fractured underlying layers (fractured-confined aquifer), which are underlain by impervious rock formation. The necessary type curves are provided both for the fractured (pumped) and overlying porous (unpumped) media. Initially, the effect of varying well diameter on the drawdown is explained. The general groundwater movement equation for this configuration yields to well known Theis, Hantush, and Jacob solutions. It is also indicated that at large times, classical Jacob straight line is not valid in every case, because there is a set of other straight lines with different slopes. The application of the methodology is presented for an aquifer test in the Kingdom of Saudi Arabia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号