首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective water resources planning, allocation, management, and use in agroecosystems require accurate quantification of actual evapotranspiration (ETc) during growing and nongrowing (dormant) periods. Prediction of ETc for a variety of vegetation surfaces during the growing season has been researched extensively, but relatively little information exists on evaporative losses during nongrowing periods for different surfaces. The objectives of this research were to evaluate ETc in relation to available energy, precipitation, and grass and alfalfa-reference ET (ETo and ETr) for a maize (Zea mays. L) field and to analyze the dynamics of surface coefficients (Kc) during the nongrowing period (October 15–April 30). The evaporative losses were measured using a Bowen ratio energy balance system (BREBS) on an hourly basis and averaged over 24?h for three consecutive nongrowing periods: 2004–2005 (Season I), 2005–2006 (Season II), and 2006–2007 (Season III). BREBS-measured ETc was approximately 50% of available energy (Rn?G; Rn is net radiation and G is soil heat flux density) during normal and wet seasons (Seasons I and III) and 41% of available energy during a dry season (Season II). Cumulative ETc ranged from 133?mm in Season II to 167?mm in Season III and exceeded precipitation by 21% during the dry season. The ratio of ETc to precipitation was 0.85 in Season I, 1.21 in Season II, and 0.41 in Season III. ETc was approximately 50% of ETo and 36% of ETr in both Seasons I and III, whereas in Season II, ETc was 32% of ETo and 23% of ETr. Overall, measured ETc during the dormant season was generally most strongly correlated with radiation terms, particularly Rn, albedo, incoming shortwave radiation, and outgoing longwave radiation. Average surface coefficients over the three seasons were 0.44 and 0.33 for grass and alfalfa-reference surfaces, respectively. Using geometric mean Kc values to calculate ETc using a KcETref approach over the entire nongrowing season yielded adequate predictions with overall root mean square deviations of 0.64 and 0.67?mm?day?1 for ETo and ETr, respectively. Estimates of ETc using a dual crop coefficient approach were good on a seasonal basis, but performed less well on a daily basis. Regression equations that were developed (accounting for serial autocorrelation in the ETc and ETref time series) yielded good estimates of ETc. Considering nongrowing period evaporative losses in water budget calculations would enable water regulatory agencies to better account for water use in hydrologic balance calculations over the entire year rather than only for the growing season and to better assess the progression and availability of water resources for the next growing season.  相似文献   

2.
Photosynthetically active radiation (PAR) intercepted by orange orchards (Frost Nucellar navel) having different canopy sizes was measured to determine the relationships with crop coefficient (Kco and Kcr) values and crop evapotranspiration (ET) (ETc). Three separate experiments were carried out near Lindsay, Calif. during the months of July and August 2004 to compute the fraction of light PAR intercepted by mature and immature orange orchards. Periodic readings of PAR data were compared with near simultaneous measurements of net radiation Rn?(mV), heat transfer through exposed flux plates Fh?(mV), and incident total solar radiation Rs?(mV). The PAR data were used to calculate canopy light interception and the results were compared with those computed from the Fh and Rs data. The other sensors were studied as possible substitutes for the more expensive PAR light bar. Light interception by the different canopies was related to crop coefficient (Kco and Kcr) values that were determined by micrometeorological measurement of ETc and Penman–Monteith reference evapotranspiration ETo and ETr.  相似文献   

3.
The Imperial Irrigation District is a large irrigation project in the western United States having a unique hydrogeologic structure such that only small amounts of deep percolation leave the project directly as subsurface flows. This structure is conducive to relatively accurate application of a surface water balance to the district, enabling the determination of crop evapotranspiration (ETc) as a residual of inflows and outflows. The ability to calculate ETc from discharge measurements provides the opportunity to assess the accuracy and consistency of an independently applied crop coefficient—reference evapotranspiration (Kc?ET0) procedure integrated over the project. The accuracy of the annual crop evapotranspiration via water balance estimates was ±6% at the 95% confidence level. Calculations using Kc and ET0 were based on the FAO-56 dual crop coefficient approach and included separate calculation of evaporation from precipitation and irrigation events. Grass reference ET0 was computed using the CIMIS Penman equation and ETc was computed for over 30 crop types. On average, Kc-based ET computations exceeded ETc determined by water balance (referred to as ETc?WB) by 8% on an annual basis over a 7 year period. The 8% overprediction was concluded to stem primarily from use of Kc that represents potential and ideal growing conditions, whereas crops in the study area were not always in full pristine condition due to various water and agronomic stresses. A 6% reduction to calculated Kc-based ET was applied to all crops, and a further 2% reduction was applied to lower value crops to bring the project-wide ET predicted by Kc-based ET into agreement with ETc?WB. The standard error of estimate (SEE) for annual ETc for the entire project based on Kc, following the reduction adjustment, was 3.4% of total annual ETc, which is considered to be quite good. The SEE for the average monthly ETc was 15% of average monthly ETc. A sensitivity analysis of the computational procedure for Kc showed that relaxation from using the FAO-56 dual Kc method to the more simple mean (i.e., single) Kc curve and relaxation of specificity of planting and harvest dates did not substantially increase the projectwide prediction error The use of the mean Kc curves, where effects of evaporation from wet soil are included as general averages, predicted 5% lower than the dual method for monthly estimates and 8% lower on an annual basis, so that no adjustment was required to match annual ET derived from water balance. About one half of the reduction in estimates when applying the single (or mean) Kc method rather than the dual Kc method was caused by the lack of accounting for evaporation from special irrigations during the off season (i.e., in between crops).  相似文献   

4.
In planning, designing, and managing of surface and groundwater supply, it is essential to accurately quantify actual evapotranspiration (ETc) from various vegetation surfaces within the water supply areas to allow water management agencies to manipulate the land use pattern alternatives and scenarios to achieve a desired balance between water supply and demand. However, significant differences among water regulatory agencies and water users exist in terms of methods used to quantify ETc. It is essential to know the potential differences associated with using various empirical equations in quantifying ETc as compared with the measurements of this critical variable. We quantified and analyzed the differences associated with using 15 grass (ETo) and alfalfa-reference (ETr) combination, temperature and radiation-based reference ET (ETref) equations in quantifying grass-reference actual ET (ETco) and alfalfa-reference actual ET (ETcr) as compared with the Bowen ratio energy balance system (BREBS)-measured ETc (ETc-BREBS) for field corn (Zea mays L.). We analyzed the performance of the equations for their full season, irrigation season, peak ET month, and seasonal cumulative ETc estimates on a daily time step for 2005 and 2006. The step-wise Kc values instead of smoothed curves were used in the ETc calculations. The seasonal ETc-BREBS was measured as 572 and 561?mm in 2005 and 2006, respectively. The root-means-quare difference (RMSD) was higher for the full season than the irrigation season and peak ET month estimates for all equations. The standardized ASCE Penman-Monteith (PM) ETco had a RMSD of 1.37?mm?d?1 for the full growing season, 1.05?mm?d?1 for the irrigation season, and 0.76?mm?d?1 for the peak month ET. The ASCE-PM, 1963 and 1948 Penman ETc estimates were closest to the ETc-BREBS. The FAO-24 radiation and the HPRCC Penman ETc estimates also agreed well with the ETc-BREBS. Most combination equations performed best during the peak ET month except the temperature and radiation-based equations. There was an excellent correlation between the ASCE-PM ETco and ETcr with a high r2 of 0.99 and a low RMSD of 0.34?mm?d?1. The difference between the ETcr and ETco was found to be larger at the high ETc range (i.e., >8?mm), but overall, the ETcr and ETco values were within 3%. Significant differences were found between the cumulative ETco-METHOD and ETcr-METHOD versus ETc-BREBS. Most combination equations, including the standardized ASCE-PM ETco and ETcr underestimated ETc-BREBS during the early periods of the growing season where the soil evaporation was the dominant energy flux of the energy balance and in the late season near and after physiological maturity when the transpiration rates were less than the midseason. The underestimations early in the season can be attributed to the lack of ability of the physical structure of the ETref×crop coefficient approach to “fully” account for the soil surface conditions when complete canopy cover is not present. The results of this study can be used as a reference tool by the water resources regulatory agencies and water users and can provide practical information on which method to select based on the data availability for reliable estimates of daily ETc for corn.  相似文献   

5.
Alfalfa-reference evapotranspiration (ETr) values sometimes need to be converted to grass-reference ET (ETo), or vice versa, to enable crop coefficients developed for one reference surface to be used with the other. However, guidelines to make these conversions are lacking. The objectives of this study were to: (1) develop ETr to ETo ratios (Kr values) for different climatic regions for the growing season and nongrowing (dormant) seasons; and (2) determine the seasonal behavior of Kr values between the locations and in the same location for different seasons. Monthly average Kr values from daily values were developed for Bushland, (Tex.), Clay Center, (Neb.), Davis, (Calif.), Gainesville, (Fla.), Phoenix (Ariz.), and Rockport, (Mo.) for the calendar year and for the growing season (May–September). ETr and ETo values that were used to determine Kr values were calculated by several methods. Methods included the standardized American Society of Civil Engineers Penman–Monteith (ASCE-PM), Food and Agriculture Organization Paper 56 (FAO56) equation (68), 1972 and 1982 Kimberly-Penman, 1963 Jensen-Haise, and the High Plains Regional Climate Center (HPRCC) Penman. The Kr values determined by the same and different methods exhibited substantial variations among locations. For example, the Kr values developed with the ASCE-PM method in July were 1.38, 1.27, 1.32, 1.11, 1.28, and 1.19, for Bushland, Clay Center, Davis, Gainesville, Phoenix, and Rockport, respectively. The variability in the Kr values among locations justifies the need for developing local Kr values because the values did not appear to be transferable among locations. In general, variations in Kr values were less for the growing season than for the calendar year. Average standard deviation between years was maximum 0.13 for the calendar year and maximum 0.10 for the growing season. The ASCE-PM Kr values had less variability among locations than those obtained with other methods. The FAO56 procedure Kr values had higher variability among locations, especially for areas with low relative humidity and high wind speed. The 1972 Kim-Pen method resulted in the closest Kr values compared with the ASCE-PM method at all locations. Some of the methods, including the ASCE-PM, produced potentially unrealistically high Kr values (e.g., 1.78, 1.80) during the nongrowing season, which could be due to instabilities and uncertainties that exist when estimating ETr and ETo in dormant season since the hypothetical reference conditions are usually not met during this period in most locations. Because simultaneous and direct measurements of the ETr and ETo values rarely exist, it appears that the approach of ETr to ETo ratios calculated with the ASCE-PM method is currently the best approach available to derive Kr values for locations where these measurements are not available. The Kr values developed in this study can be useful for making conversions from ETr to ETo, or vice versa, to enable using crop coefficients developed for one reference surface with the other to determine actual crop water use for locations, with similar climatic characteristics of this study, when locally measured Kr values are not available.  相似文献   

6.
Knowledge of spatiotemporal distribution of evapotranspiration (ET) on large scales, as quantified by satellite remote sensing techniques, can provide important information on a variety of water resources issues such as evaluating water distributions, water use by different land surfaces, water allocations, water rights, consumptive water use and planning, and better management of ground and surface water resources. The objective of this study was to assess the operational characteristics and performance of the surface energy balance algorithm for land (SEBAL) model for estimating crop ET (ETc) and other energy balance components, and mapping spatial distribution and seasonal variation of ETc on a large scale in south-central Nebraska climatic conditions. A total of seven cloud free Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) satellite images (May 19, June 20, July 22, August 7, September 8, September 16, and October 18, 2005) were processed to generate ETc maps and estimate surface energy fluxes. Predictions from the SEBAL model were compared with the Bowen ratio energy balance system (BREBS)-measured fluxes on an instantaneous and daily basis. The ETc maps generated by the model for seven Landsat overpass days showed a very good progression of ETc with time during the growing season in 2005 as the surface conditions continuously changed. The predictions for some surface energy fluxes were very good. Overall, a very good correlation was found between the BREBS-measured and SEBAL-estimated ETc with a good r2 of 0.73 and a root-mean-square difference (RMSD) of 1.04?mm?day?1. The estimated ETc was within 5% of the measured ETc. The model was able to predict growing season (from emergence to physiological maturity) cumulative daily corn ET reasonable well within 5% of the BREBS-measured values. The model overestimated the surface albedo by about 26% with a RMSD of 0.05. The difference between the measured and predicted albedo was the greatest on May 19, early in the growing season before the full canopy cover. The second largest difference between the two albedo values was on October 18, a day after harvest. The model significantly under predicted soil heat flux with a large RMSD of 80?W?m?2 and most of the underestimation occurred in the late growing season. Local calibration of soil heat flux significantly improved the agreement between the measured and predicted values. Furthermore, the sensible heat flux was underestimated between September 20 (after physiological maturity) and October 18 (a day after harvest). While our results showed that SEBAL can be a viable tool for generating ETc maps to assess and quantify spatiotemporal distribution of ET on large scales as well as estimating surface energy fluxes, its operational assessment for estimating sensible heat flux and ETc, especially during the drier periods for different surfaces, needs further development.  相似文献   

7.
Accurate estimates of crop evapotranspiration ETc, that quantify the total water used by a crop, are needed to optimize irrigation scheduling for horticultural crops and to minimize water degradation. During early growth, accurate assessments of ETc are difficult in vegetable crops because of high soil evaporation due to frequent irrigation. A model to estimate ETc for vegetable crops, using only daily reference evapotranspiration data as an input parameter, was developed. It calculates crop transpiration and soil evaporation based on ground cover and daily radiation intercepted by the canopy. The model uses a two-stage soil evaporation method adapted to conditions of variable reference evapotranspiration. The model was evaluated against data using measurements from two seasons of lettuce crop, two tomato fields in the same season, and one season of broccoli crop production. Using all of the crop data, the root-mean-square error for measured versus modeled daily ETc was 0.72 mm day?1, indicating that the model works well.  相似文献   

8.
Crop evapotranspiration (ETc) and crop coefficient (Kco) values of four clean-cultivated navel-orange orchards that were irrigated with microsprinklers, having different canopy features (e.g., age, height, and canopy cover) were evaluated. Half-hourly values of latent heat flux density were estimated as the residual of the energy balance equation using measured net radiation (Rn), soil heat flux density (G), and sensible heat flux density (H) estimated using the surface renewal method. Hourly means of latent heat flux density (LE) were calculated and were divided by the latent heat of vaporization (L) to obtain ETc. Crop coefficients were determined by calculating the ratio Kco = ETc/ETo, with reference evapotranspiration (ETo) determined using the hourly Penman–Monteith equation for short canopies. The estimated Kco values ranged from 0.45 to 0.93 for canopy covers having between 3.5 and 70% ground shading. The Kco values were compared with Kc values from FAO 24 (reported by Doorenbos and Pruitt in 1975) and FAO 56 (reported by Allen et al. in 1998) and with Kc values from research papers that estimated reference ET from pan evaporation data using the FAO 24 method. The observed Kco values were slightly higher than Kc values for clean-cultivated orchards with high-frequency drip irrigation in Arizona and were slightly lower than for nontilled orchards in Florida. The Kco values were considerably higher than Kc values from FAO 24 and FAO 56 and were higher than Kc values from border-irrigated orchards near Valencia, Spain.  相似文献   

9.
Experiments to measure the evapotranspiration of an improved, irrigated pasture were conducted at the University of California, Davis, CA field station and over a commercial irrigated pasture on Twitchell Island in the Sacramento-San Joaquin River Delta using the surface renewal (SR) method. In Davis, the SR method was used to determine well-watered crop evapotranspiration (ETc) over short grass, and the results were compared with the ASCE-EWRI standardized reference evapotranspiration (ET0) for a short canopy to establish that a crop coefficient Kc = 1.00 is appropriate for estimating well-watered pasture ETc. In the Twitchell Island study, surface renewal was used to determine the actual evapotranspiration (ETa) from a commercial pasture. A stress coefficient of Ks = ETa/ET0 ≈ 0.90 was observed during the high ET period (ET0>7?mm?day?1) from about mid-June through mid-July for the Twitchell Island pasture. Otherwise, the pasture was mainly unstressed, so the Ks = 1.0. Thus, assuming no future changes in irrigation management, using ET0 from Twitchell Island, a Kc = 1.00, and Ks = 1.00 will provide good estimates of ETa during low to moderate ET periods and Ks ≈ 0.90 should be used when ET0>7.0?mm?day?1. In general, a thermocouple for SR measurements costs about $100, whereas the price for a sonic anemometer varies between $3,000 and $20,000, so the SR method provides a low-cost method to measure ETa.  相似文献   

10.
Evapotranspiration: Concepts and Future Trends   总被引:1,自引:0,他引:1  
Past research on evapotranspiration has provided sound theoretical knowledge and practical applications that have been validated through field measurements. Many different approaches have been used; however, when primary concepts and standard definitions are accepted, it is possible to find reasonable agreement among methods. This paper reviews such approaches, from Penman to Penman-Monteith. The standard concepts of potential evaporation (EP) and equilibrium evaporation (Ee), and the introduction of the climatic resistance (re), provide a better understanding of the role of the climate together with surface and aerodynamic resistances (rs and ra). Therefore, the concept of reference evapotranspiration (ETo), particularly the new one adopted by the Food and Agricultural Organization of the United Nations, can be better understood, as well as its limitations. Crop evapotranspiration (ETc) is related to both ETo and Ee. Crop coefficients (Kc) can be shown to have two components, αo and αc, with Kc = αoαc. The αo is a function of the climatic resistance and of the aerodynamic resistances of the crop and of the reference crop. The αc is a function of both surface and aerodynamic resistances of the crop and of the reference crop. From this analysis some ideas on future developments result that are directed toward providing compatibility between the one- and two-step calculation of ETc.  相似文献   

11.
The crop coefficient during the initial period (Kc?ini) varies with wetting frequency, evaporative demand, and water-holding capacity of the upper soil layer. It is possible to develop a semitheoretical integrated function to predict the average Kc?ini representing the initial period of a growing season when the soil is mostly bare and that incorporates these three factors. The function is based on a two-stage evaporation function as used in the Food and Agriculture Organization Irrigation and Drainage Paper No. 56 (FAO-56) dual crop coefficient method. Parameters in the integrated equation are soil based and can be calculated a priori without field measurements. The procedure can be used to produce graphical figures similar to that introduced in FAO-24 for Kc?ini. Similar to FAO-24, the function utilizes the mean time between wetting events and reference evapotranspiration. In this paper, the development of the procedure and figures for Kc?ini are described. Comparisons with measured evaporation and Kc?ini in southern California indicate relatively good performance by the function without calibration.  相似文献   

12.
Alfalfa hay yield, yield-consumptive use ratio (Y∕ETc), and hay price across a range of rainfall and evapotranspiration conditions of the western states is evaluated to determine alfalfa hay water value or benefit. Included is a determination of long-term mean values and variability of yield, Y∕ETc ratios, and associated irrigation water values. These are compared with published hay water-use efficiencies, production, and water costs. Available rainfall, reference evapotranspiration ET0, hay yields, and prices for counties in Arizona (1987–1999), California (1998–1999), and Idaho (1993–1999) were used. Alfalfa hay Y∕ETc ratios decrease with increasing ETc, although their variability increases with increasing ETc. The greatest Y∕ETc ratios (16–17 kg∕ha-mm) and irrigation water values IW$ (IW$ = $2,800–$3,000∕ha-m), with relatively moderate variability, are associated with an irrigation water IW requirement of ~800 mm, reflecting a combination of relatively high hay values, ETc, and beneficial rain. Although this IW$ is twice that of water delivery prices below the California delta and is comparable with average municipal water costs of $4,000∕ha-m for large western cities, the average is nearly 1∕3.  相似文献   

13.
In Nebraska, historically, there have been differences among the water regulatory agencies in terms of the methods used to compute reference evapotranspiration (ETref) to determine actual crop water requirements and hydrologic balances of watersheds. Because simplified and/or empirical temperature or radiation-based methods lack some of the major weather parameters that can significantly affect grass and alfalfa-reference ET (ETo and ETr) the performance of these methods needs to be investigated to help decision makers to determine the potential differences associated with using various ETref equations relative to the standardized ASCE Penman–Monteith (ASCE-PM) equations. The performance of 12 ETo and five ETr equations were analyzed on a daily basis for south central Nebraska from 1983 to 2004. The standardized ASCE-PM ETo and ETr values were used as the basis for comparisons. The maximum ASCE-PM ETo value was estimated as 12.6?mm?d?1, and the highest ETr value was estimated as 19?mm?d?1 on June 21, 1988. On this day, the atmospheric demand for evaporation was extremely high and the vapor pressure deficit (VPD) reached a remarkably high value of 4.05?kPa. The combination-based equations exhibited significant differences in performance. The 1963 Penman method resulted in the lowest RMSD of 0.30?mm?d?1 (r2 = 0.98) and its estimates were within 2% of the ASCE-PM ETo estimates. The 1948 Penman estimates were similar to the 1963 Penman (r2 = 0.98, RMSD = 0.39?mm?d?1). Kimberly forms of alfalfa-reference Penman equations performed well with RMSD of 0.48?mm?d?1 for the 1972 Kimberly–Penman and 0.67?mm?d?1 for the 1982 Kimberly–Penman. The locally-calibrated High Plains Regional Climate Center (HPRCC) Penman method, ranked 6th, performed well and underestimated the ASCE-PM ET by 5% (RMSD = 0.56?mm?d?1). Most of the underestimations occurred at the high ET range (>11?mm) and this was attributed to the upper limits applied by the HPRCC on VPD, (2.3?kPa) and wind speed (5.1?m?s?1). The lack of ability of the radiation methods in accounting for the wind speed and relative humidity hindered the performance of these methods in the windy and rapidly changing VPD conditions of south central Nebraska. The 1977 FAO24 Blaney–Criddle method was the highest ranked (seventh) noncombination method (RMSD = 0.64?mm?d?1, r2 = 0.94). The FAO24 Penman estimates were within 4% of the ASCE-PM ETo. Overall, there were large differences between the ASCE-PM ETo and ETr versus other ETref equations that need to be considered when other forms of the combination or radiation and temperature-based equations are used to compute ETref. We recommend that the ASCE-PM ETo or ETr equations be used for estimating ETref when necessary weather variables are available and have good quality. The results of this study can be used as a reference tool to provide practical information, for Nebraska and similar climates, on the potential differences between the ASCE-PM ETo and ETr and other ETref equations. Results can aid in selection of the alternative method(s) for reasonable ETref estimations when all the necessary weather inputs are not available to solve the ASCE-PM equation.  相似文献   

14.
Estimation of evapotranspiration (ET) is necessary in water resources management, farm irrigation scheduling, and environmental assessment. Hence, in practical hydrology, it is often necessary to reliably and consistently estimate evapotranspiration. In this study, two artificial intelligence (AI) techniques, including artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), were used to compute garlic crop water requirements. Various architectures and input combinations of the models were compared for modeling garlic crop evapotranspiration. A case study in a semiarid region located in Hamedan Province in Iran was conducted with lysimeter measurements and weather daily data, including maximum temperature, minimum temperature, maximum relative humidity, minimum relative humidity, wind speed, and solar radiation during 2008–2009. Both ANN and ANFIS models produced reasonable results. The ANN, with 6-6-1 architecture, presented a superior ability to estimate garlic crop evapotranspiration. The estimates of the ANN and ANFIS models were compared with the garlic crop evapotranspiration (ETc) values measured by lysimeter and those of the crop coefficient approach. Based on these comparisons, it can be concluded that the ANN and ANFIS techniques are suitable for simulation of ETc.  相似文献   

15.
A key component in the calculation of reference crop evapotranspiration (ETr) is the weather data. If the weather data have been collected from a station under nonreference conditions, the data itself may contain errors, which will in turn yield inaccurate ETr estimates. It was proposed by Allen in 1996 that data used for evapotranspiration be scrutinized by comparing daily minimum temperature (Tmin) and the daily average dew point temperature (Tdew). If the difference between Tmin and Tdew is greater than 3°C, then the site is considered to be arid (nonreference) and adjustments are recommended for temperature and dew point data. In Arizona, normal weather conditions often occur where Tmin and Tdew do not approach each other. This study examined the appropriateness of applying the conditions set forth by Allen to temperature data collected in central Arizona. Two weather stations were set up in a 35.5?ha alfalfa field in central Arizona to measure dry bulb and wet bulb temperatures. Additionally, plant temperature data were collected to verify field conditions. Daily data were taken for 1.5 years at the University of Arizona’s Maricopa Agricultural Center. Of the 611 days of data collected, the difference between Tmin and Tdew was greater than 3°C on 329 days, indicating that these data were not taken under reference conditions. Among these data, 178 days were verified as nonreference but 151 were verified as actually being under reference conditions. Making adjustments for these days (151 days) resulted in a 47?mm decrease in ETr estimation, which mostly occurred during the summer.  相似文献   

16.
This paper examines the potential of artificial neural networks (ANN) in estimating the actual crop evapotranspiration (ET) from limited climatic data. The study employed radial-basis function (RBF) type ANN for computing the daily values of ET for rice crop. Six RBF networks, each using varied input combinations of climatic variables, have been trained and tested. The model estimates are compared with measured lysimeter ET. The results of the study clearly demonstrate the proficiency of the ANN method in estimating the ET. The analyses suggest that the crop ET could be computed from air temperature using the ANN approach. However, the present study used a single crop data for a limited period, therefore further studies using more crops as well as weather conditions may be required to strengthen these conclusions.  相似文献   

17.
Crop coefficient curves provide simple, reproducible means to estimate crop evapotranspiration (ET) from weather-based reference ET values. The dual crop coefficient (Kc) method of the Food and Agricultural Organization of the United States (FAO) Irrigation and Drainage Paper No. 56 (FAO-56) is intended to improve daily simulation of crop ET by considering separately the contribution of evaporation from soil. The dual method utilizes “basal” crop coefficients representing ET from crops having a dry soil surface and separately predicts evaporation from bare soil based on a water balance of the soil surface layer. Three extensions to the evaporation calculation procedure are described here that are intended to improve accuracy when applications warrant the extra complexity. The first extension uses parallel water balances representing the portion of the soil surface wetted by irrigation and precipitation together and the portion wetted by precipitation alone. The second extension uses three “stages” for surface drying and provides for application to deep cracking soils. The third extension predicts the extraction of the transpiration component from the soil surface layer. Sensitivity and analyses and illustrations indicate moderate sensitivity of daily calculated ET to application of the extensions. The dual Kc procedure, although relatively simple computationally and structurally, estimates daily ET as measured by lysimeter relatively well for periods of bare soil and partial and full vegetation cover.  相似文献   

18.
Quantifying evapotranspiration (ET) from agricultural fields is important for field water management, water resources planning, and water regulation. Traditionally, ET from agricultural fields has been estimated by multiplying the weather-based reference ET by crop coefficients (Kc) determined according to the crop type and the crop growth stage. Recent development of satellite remote sensing ET models has enabled us to estimate ET and Kc for large populations of fields. This study evaluated the distribution of Kc over space and time for a large number of individual fields by crop type using ET maps created by a satellite based energy balance (EB) model. Variation of Kc curves was found to be substantially larger than that for the normalized difference vegetation index because of the impacts of random wetting events on Kc, especially during initial and development growth stages. Two traditional Kc curves that are widely used in Idaho for crop management and water rights regulation were compared against the satellite-derived Kc curves. Simple adjustment of the traditional Kc curves by shifting dates for emergence, effective full cover, and termination enabled the traditional curves to better fit Kc curves as determined by the EB model. Applicability of the presented techniques in humid regions having higher chances of cloudy dates was discussed.  相似文献   

19.
This work presents a simple, cost-effective, and operational approach to monitor crop water requirements at the regional scale for water management and monitoring purposes. The recommended Food and Agricultural Organization of the United Nations methodology (FAO-56) calculates crop evapotranspiration using crop-specific coefficients (Kc), which vary according to the crop type, health, and phenological stage. This approach, though widely applied for irrigation planning, cannot always match the appropriate crop coefficient with the actual crop phenological stage and health condition, especially in anomalous situations. Previous research demonstrated that crop coefficients and spectral vegetation indexes are correlated. Recent studies have used this relationship with high-resolution satellite data from different sensors to provide information to irrigation advisory services. However, high-resolution data are not feasible for an operational and routine monitoring of water consumption and needs. This paper tests the usefulness of time series of coarse resolution satellite data such as those collected by the moderate-resolution imaging spectroradiometer (MODIS) sensor, to monitor crop coefficients temporal and spatial variability and therefore crop water needs at the regional scale taking advantage of the peculiar characteristics offered by MODIS in terms of high temporal resolution and preprocessed products availability. The outlined methodology takes into account the actual growing stage of the crops and nearly real-time vegetation variations, overcoming some limitations of the traditional FAO approach while preserving the maximum operability. The analysis was carried out in the South Milan agricultural area on data referring to 2003 and 2004. The results agreed with those of other studies and proved to be able to account for the anomalous conditions of the summer in 2003. These results were then compared with those obtained using the traditional FAO crop coefficient curves built with data collected during field campaigns in the same years in rice fields. Constraints, limitations, and possible uses are discussed.  相似文献   

20.
A model is presented that uses a daily mean evapotranspiration ETo rate to estimate energy-limited (potential or Stage 1) soil evaporation, and it also uses daily mean ETo and a soil hydraulic β factor to estimate soil hydraulic property-limited (Stage 2) evaporation. The model provides good estimates of cumulative soil evaporation on both hourly and daily bases when compared to observed soil evaporation in three field trials. Crop coefficient Kc values from cumulative hourly and cumulative daily soil evaporation estimates and ETo data were comparable. Using a soil hydraulic factor (β = 2.6) in the model gave a fair approximation for the widely used Kc curves for initial growth of crops presented in the United Nations Food and Agricultural Organization's Irrigation and Drainage Paper 24. However, using a site-specific β factor should improve soil evaporation and Kc estimates for site-specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号