首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple semianalytical model is proposed for calculating the drawdown due to pumping a well tapping two aquifers. The new model can take into account the transient pumping discharge and cross flow between the aquifers. The transient contributions of the aquifers to the pumped discharge can also be implicitly obtained using the model.  相似文献   

2.
A procedure is proposed for calculating the spatial and temporal variation of drawdown due to pumping a well tapping two aquifers separated by an aquitard, using convolution and MODFLOW. It can take into account the unsteady pumping discharge and cross flow through the intervening aquitard. A discrete pulse kernel method based on superposition/convolution is used to account for the unsteady pumping discharge. The discrete pulse kernels are calculated using MODFLOW. The contributions of the aquifers to the pumped discharge are accounted implicitly and not required to be specified explicitly. Available numerical models (e.g., MODFLOW) require the aquifer contributions that are implicitly controlled, to be specified explicitly. The use of the suggested procedure is illustrated using examples. The contributions of the aquifers are found not in proportion to their transmissivities but vary with time, when the diffusivities of the aquifers are not equal. Applying the new procedure, the numerical models, such as MODFLOW can be used to correctly model the transient pumping from two aquifers with cross flow; thus, it opens up the possibility of numerically accounting for the aquifer heterogeneity while dealing with the flow to a well tapping two aquifers under a transient pumping, which would be otherwise difficult to account for analytically.  相似文献   

3.
4.
Analytical solutions for rate and volume of flow depletion induced by pumping a well from a stream that intersects an impermeable or a recharge boundary at right angles are derived using the basic flow depletion factor defined earlier by the author. A new concept of directly obtaining stream flow depletion using the method of images is proposed. The solutions are derived for five different management cases of a stream and boundary intersecting at right-angles, assuming the aquifer to be confined with semi-infinite areal extent. A computationally simple function is proposed for accurately approximating the error function. The existing analytical solution in the case of a right-angle bend of stream given by Hantush was obtained for unconfined aquifers using a linearization of the governing partial differential equation. The solution for this case obtained using the proposed method for confined aquifer is the same as obtained by Hantush for unconfined aquifers, which shows that the linearization adopted by Hantush does not actually solve this problem for unconfined aquifers.  相似文献   

5.
This study derives a semianalytical solution for drawdown distribution during a constant-head test at a partially penetrating well in an unconfined aquifer. The constant-head condition is used to describe the boundary along the screen. In addition, a free-surface condition is used to delineate the upper boundary of the unconfined aquifer. The Laplace-domain solution is then derived using separation of variables and Laplace transform. This solution can be used to identify the aquifer parameters from the data of the constant-head test when integrated with an optimization scheme or to investigate the effects of vertical flow caused by the partially penetrating well and free-surface boundary in an unconfined aquifer.  相似文献   

6.
Analytical but approximate methods are developed for obtaining pumping induced rate and volume of stream flow depletion, which can account for unsteady (any variation) pumping discharge and are also applicable for intermittent pumping and recovery. Exact analytical solutions for a sinusoidal variation in the pumping discharge are proposed; the proposed methods are verified using these solutions. The proposed methods use ramp kernels that give results superior to the conventional convolution. These ramp kernels assume the linear variation in pumping discharge between the two consecutive discretized points as opposed to the uniform variation assumed in the conventional convolution. The proposed solutions are applicable for homogeneous and isotropic aquifers hydraulically connected to streams.  相似文献   

7.
A procedure for calculating the flow depletion from a finite length of a stream induced by a pumping well in an adjacent aquifer is developed. Four management cases of finite length of the stream including a basic case are considered. A “basic flow depletion factor” is defined, in terms of which the flow depletion factors for all cases are expressed. The basic flow depletion factor is twice the Hantush M function. A computationally simple and accurate practical approximation of the basic flow depletion factor is presented that encompasses the full practical range of the solutions. Using this approximation, an optimization method is proposed for the estimation of the aquifer hydraulic diffusivity and effective distance from the pumping well to the line of recharge from the measured temporal variation of stream flow depletion between two sections. During optimization, repeated computation of stream flow depletion is required; use of the proposed approximation simplifies the computation.  相似文献   

8.
A computationally simple kernel method is proposed for obtaining drawdowns due to unsteady pumping of large diameter wells. The kernels can be worked out even on a hand-held calculator. The new method can also be used to obtain residual drawdowns. The new method yields results as good as those obtained using earlier methods.  相似文献   

9.
Analytical expressions for rate and volume of flow depletion of semipervious streams due to sinusoidal variation in pumping rate are obtained. An analytical but approximate method is developed for obtaining the rate and volume of stream flow depletion due to arbitrary unsteady pumping discharge. The method uses the ramp kernel and convolution. The use of ramp kernels permits linear interpolation between two consecutive discretized discharge values. The analytical equations for the ramp kernels for the rate and volume of stream flow depletion are derived. The proposed method is applicable for homogeneous and isotropic aquifers that are hydraulically connected to streams.  相似文献   

10.
This paper offers solutions for drawdowns due to intermittent pumping cycles or cyclic pumping, which are high accuracy approximations of the series of Theis functions superimposed in time. The proposed approximation formulas are an improvement over the earlier works. The earlier approximations are valid only if the number of pumping cycles is greater than 10 and involve gamma functions that are less convenient to evaluate than the rational approximation formulas offered in this paper. The proposed approximations are valid for any number of pumping cycles and involve simple functions that can be computed even using a calculator. The drawdown functions are defined for the drawdowns at the end of pumping or shutoff periods. The proposed expressions for these functions are also suitable for the estimation of aquifer parameters by plotting the observed drawdowns on semilogarithmic paper. Procedures for estimation of storage coefficient and head loss at the well from cyclic pumping drawdowns are not available. This paper also offers procedures for the estimation of transmissivity, storage coefficient, and head loss at the pumped well from the observed intermittent (cyclic) pumping drawdowns.  相似文献   

11.
Simple Method for Quick Estimation of Leaky-Aquifer Parameters   总被引:1,自引:0,他引:1  
Simple method and explicit equations are proposed for estimating the parameters of leaky aquifers from drawdown at an observation well, which avoid the curve matching or initial estimate of the parameter. The proposed method is computationally simple and the calculations can be performed even on a handheld calculator. The application of the methods is illustrated, using published data sets. The new method yields quick and accurate estimates of the leaky-aquifer parameters, if observed drawdowns do not contain large errors. The proposed method can also analyze the early drawdowns for accurate characteristics/parameters of a confined aquifer, if the conductance of the aquitard is assigned a zero value. It is hoped that the proposed method would be of help to field engineers and practitioners.  相似文献   

12.
Analytical solutions for groundwater head in the presence of subsurface drains are important in assessing the effectiveness of an existing drainage system under a probable extreme variation in the rate of recharge and designing a new drainage system. Generalized analytical solutions for groundwater head in inclined aquifers in the presence of parallel subsurface drains are obtained considering the transient rate of recharge as a power series (polynomial) function and depth-dependent rate of evapotranspiration. An appropriate function, new to analytical drainage studies, is used for correctly representing the depth-dependent rate of evapotranspiration. The solutions are obtained considering the practical situation of drains placed at shallow depth in a considerable depth of aquifer. Two conditions of large and small saturated thicknesses in comparison to the increase in groundwater head are considered. A mathematical criterion is proposed to distinguish between large and small saturated thicknesses. The analytical equations for discharge to drains for different cases considered are also obtained. The discharge equations used by prior investigators are found inappropriate.  相似文献   

13.
A kernel method is proposed for calculating transient rate and cumulative volume of well discharge under constant drawdown. The new method can also be used for obtaining the drawdown (in pressure head) in the aquifer at some distance away from the well. Employing the new method, an optimization method is used to estimate the aquifer parameters from transient well discharge or drawdown in the aquifer pressure head. The proposed method can also be used to model the recovery of drawdown (in aquifer pressure head) after the plug-in of the well.  相似文献   

14.
Simple equations are proposed for estimating storage coefficient and transmissivity of an aquifer from drawdowns in large- diameter wells. The proposed method requires determination of the peak and time to peak of a unimodal curve. Using these values and utilizing the provided set of equations, the aquifer parameters are estimated through an iterative procedure. The proposed method is void of subjectivity involved in the previously proposed curve matching methods. Also, the new method can be used when the conventional curve matching methods cannot be applied to estimate the aquifer parameters. The new method can be used to estimate the aquifer parameters from the drawdown data observed only up to a time so that the peak could be determined.  相似文献   

15.
An experimental pipeline system with a multistage centrifugal pump was used to study the effect of transient operations on the hydrodynamic performance of a centrifugal pump. Several transient flow operations were considered, ranging from very mild to severe transients. The dynamic relationship of total pressure rise across the pump to the flow rate was compared with that of the steady state. Deviation between the dynamic pump head and the value given by the steady-state curve at the same instantaneous discharge was established and found to be a function of the severity of the transient. It was found that severe flow conditions could cause this deviation to exceed 30% of the steady-state value. The use of the steady-state pump head-discharge relationship in the solution of transient pipe flow by the method of characteristics (MOC) is discussed. It was found that the steady-state pump head-discharge curve was not accurate enough to support the solution of unsteady pipe flow application by the MOC.  相似文献   

16.
Diagnostic Curve for Confined Aquifer Parameters from Early Drawdowns   总被引:2,自引:0,他引:2  
A diagnostic curve of unimodal shape is developed for identifying the confined aquifer parameters from early drawdowns. A scaled well function is proposed for the diagnostic curve and computationally simple functions are developed for its accurate approximation. The diagnostic curve may be viewed as an alteration of the Theis’ curve or as the generalization of a previous approach proposed by the writer. Plotting the pumping test data in a convenient form and matching it to the diagnostic curve with a parallel shift of axes identify the aquifer parameters. The unimodal shape of the diagnostic curve facilitates matching and reduces the personal errors. The proposed method is simple, easy to apply, and yields accurate estimates of aquifer parameters from only early drawdowns, which would save considerable time and money involved in conducting a long-duration pumping test. The estimates obtained using the new method are as good as those obtained from much more complex methods. The new method does not require either the initial guess for the parameter values or repetitive evaluation of the well function.  相似文献   

17.
Two sets of unimodal diagnostic curves, one set assumes no aquitard storage and the other set assumes aquitard storage, are developed for identifying the parameter of leaky aquifers from early drawdowns, which yields accurate estimates of the parameters and lessens the subjectivity due to personal errors. The proposed diagnostic curve method is simple, easy to apply, and is based on matching of the diagnostically plotted observed drawdowns to an appropriate diagnostic curve. The new method is simple, easy to apply, does not require either the initial guess for the parameter values or repetitive evaluation of the leaky aquifer well function, and outperforms the conventional curve-matching, optimization, extended Kalman filter, and artificial neural network methods. The proposed set of diagnostic curves has a good diagnostic property and is able to easily identify nonideal conditions. The new method suggests a shorter duration pumping test, which would save time, money, and water. It is hoped that the proposed method would be useful to the field engineers and practitioners.  相似文献   

18.
The approach by the author for modeling the large-diameter wells using MODFLOW is extended to the partially penetrating large-diameter wells. The temporal variation of drawdown due to a steady pumping is presented in the form of diagnostic curves for different penetration. These diagnostic curves can also be used to estimate the aquifer parameters from the observed drawdowns in a partially penetrating large-diameter well.  相似文献   

19.
A computationally simple approximation of the Hantush M function is proposed. Using this approximation, an optimization method is proposed for identifying the aquifer parameters from early drawdowns around partially penetrating wells. The aquifer parameters are hydraulic conductivity and specific storage. The application of the method is illustrated using a field example. The proposed method results in a 120-fold saving in time when compared to the prior method. It is hoped that the proposed approximation and method will be of help to the field engineers and practitioners.  相似文献   

20.
The effect of subsurface barrier on the motion of the saltwater—freshwater interface in coastal aquifers is analyzed for wide ranging freshwater pumping scenarios. A Galerkin finite-element model considering sharp interface approach is used for this purpose. A semi-pervious subsurface barrier extending up to impervious bottom of the aquifer is considered at certain distance inland, parallel to the seacoast. The effect of barrier is analyzed in checking the advancement of the saltwater-freshwater interface under different scenarios of freshwater withdrawals at seaward and landward locations of the barrier and compared with nonbarrier conditions. The results indicated that barrier is able to check the advancement of the intrusion significantly and in certain cases, the progress is completely stalled for withdrawals on the landward side. Also, marked variations in the interface profile are observed as compared to no barrier condition, especially, for the seaward freshwater developments. From the model, nearest possible locations from the seacoast have been worked out for the safe withdrawal of freshwater where their effects are negligible on the saltwater advancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号