首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organization of an efficient self-diagnosis of the multicomponent computer and communication systems of diverse structures always attracted attention of the researchers and engineers. A method to solve these problems is presented in the paper by way of the example of a system whose structure is modeled by a uniform ordinary bipartite graph of diameter d = 3, any degree s > 1, and any number n of vertices, where n = s(s ? 1) + 1. The method requires checking of (s ? 1)3 graph loops of length eight each, which is smaller than the number s 2(s ? 1) + s of checks of single graph edges.  相似文献   

2.
Network cost and fixed-degree characteristic for the graph are important factors to evaluate interconnection networks. In this paper, we propose hierarchical Petersen network (HPN) that is constructed in recursive and hierarchical structure based on a Petersen graph as a basic module. The degree of HPN(n) is 5, and HPN(n) has \(10^n\) nodes and \(2.5 \times 10^n\) edges. And we analyze its basic topological properties, routing algorithm, diameter, spanning tree, broadcasting algorithm and embedding. From the analysis, we prove that the diameter and network cost of HPN(n) are \(3\log _{10}N-1\) and \(15 \log _{10}N-1\), respectively, and it contains a spanning tree with the degree of 4. In addition, we propose link-disjoint one-to-all broadcasting algorithm and show that HPN(n) can be embedded into FP\(_k\) with expansion 1, dilation 2k and congestion 4. For most of the fixed-degree networks proposed, network cost and diameter require \(O(\sqrt{N})\) and the degree of the graph requires O(N). However, HPN(n) requires O(1) for the degree and \(O(\log _{10}N)\) for both diameter and network cost. As a result, the suggested interconnection network in this paper is superior to current fixed-degree and hierarchical networks in terms of network cost, diameter and the degree of the graph.  相似文献   

3.
The distance graph G(n, 2, 1) is a graph where vertices are identified with twoelement subsets of {1, 2,..., n}, and two vertices are connected by an edge whenever the corresponding subsets have exactly one common element. A random subgraph G p (n, 2, 1) in the Erd?os–Rényi model is obtained by selecting each edge of G(n, 2, 1) with probability p independently of other edges. We find a lower bound on the independence number of the random subgraph G1/2(n, 2, 1).  相似文献   

4.
We present a method to construct a theoretically fast algorithm for computing the discrete Fourier transform (DFT) of order N = 2 n . We show that the DFT of a complex vector of length N is performed with complexity of 3.76875N log2 N real operations of addition, subtraction, and scalar multiplication.  相似文献   

5.
Let \(G=(V,E)\) be an unweighted undirected graph with n vertices and m edges, and let \(k>2\) be an integer. We present a routing scheme with a poly-logarithmic header size, that given a source s and a destination t at distance \(\varDelta \) from s, routes a message from s to t on a path whose length is \(O(k\varDelta +m^{1/k})\). The total space used by our routing scheme is \(mn^{O(1/\sqrt{\log n})}\), which is almost linear in the number of edges of the graph. We present also a routing scheme with \(n^{O(1/\sqrt{\log n})}\) header size, and the same stretch (up to constant factors). In this routing scheme, the routing table of every \(v\in V\) is at most \(kn^{O(1/\sqrt{\log n})}deg(v)\), where deg(v) is the degree of v in G. Our results are obtained by combining a general technique of Bernstein (2009), that was presented in the context of dynamic graph algorithms, with several new ideas and observations.  相似文献   

6.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

7.
The peridynamic nonlocal continuum model for solid mechanics is an integro-differential equation that does not involve spatial derivatives of the displacement field. Several numerical methods such as finite element method and collocation method have been developed and analyzed in many articles. However, there is no theory to give a finite difference method because the model does not involve spatial derivatives of the displacement field. Here, we consider a finite difference scheme to solve a continuous static bond-based peridynamics model of mechanics based on its equivalent partial integro-differential equations. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix-vector multiplications arising from finite difference discretization respectively. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from \(O(N^{3})\) required by traditional methods to O(Nlog\(^{2}N)\) and the memory requirement from \(O(N^{2})\) to O(N) without using any lossy compression, where N is the number of unknowns. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

8.
Many hard algorithmic problems dealing with graphs, circuits, formulas and constraints admit polynomial-time upper bounds if the underlying graph has small treewidth. The same problems often encourage reducing the maximal degree of vertices to simplify theoretical arguments or address practical concerns. Such degree reduction can be performed through a sequence of splittings of vertices, resulting in an expansion of the original graph. We observe that the treewidth of a graph may increase dramatically if the splittings are not performed carefully. In this context we address the following natural question: is it possible to reduce the maximum degree to a constant without substantially increasing the treewidth?We answer the above question affirmatively. We prove that any simple undirected graph G=(V,E) admits an expansion G′=(V′,E′) with the maximum degree ≤3 and tw(G′)≤tw(G)+1, where tw(?) is the treewidth of a graph. Furthermore, such an expansion will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed efficiently from a tree-decomposition of G. We also construct a family of examples for which the increase by 1 in treewidth cannot be avoided.  相似文献   

9.
In this paper, a steganographic scheme adopting the concept of the generalized K d -distance N-dimensional pixel matching is proposed. The generalized pixel matching embeds a B-ary digit (B is a function of K and N) into a cover vector of length N, where the order-d Minkowski distance-measured embedding distortion is no larger than K. In contrast to other pixel matching-based schemes, a N-dimensional reference table is used. By choosing d, K, and N adaptively, an embedding strategy which is suitable for arbitrary relative capacity can be developed. Additionally, an optimization algorithm, namely successive iteration algorithm (SIA), is proposed to optimize the codeword assignment in the reference table. Benefited from the high dimensional embedding and the optimization algorithm, nearly maximal embedding efficiency is achieved. Compared with other content-free steganographic schemes, the proposed scheme provides better image quality and statistical security. Moreover, the proposed scheme performs comparable to state-of-the-art content-based approaches after combining with image models.  相似文献   

10.
Consideration was given to the classical NP-hard problem 1|rj|Lmax of the scheduling theory. An algorithm to determine the optimal schedule of processing n jobs where the job parameters satisfy a system of linear constraints was presented. The polynomially solvable area of the problem 1|rj|Lmax was expanded. An algorithm was described to construct a Pareto-optimal set of schedules by the criteria Lmax and Cmax for complexity of O(n3logn) operations.  相似文献   

11.
A grid graph \(G_{\mathrm{g}}\) is a finite vertex-induced subgraph of the two-dimensional integer grid \(G^\infty \). A rectangular grid graph R(mn) is a grid graph with horizontal size m and vertical size n. A rectangular grid graph with a rectangular hole is a rectangular grid graph R(mn) such that a rectangular grid subgraph R(kl) is removed from it. The Hamiltonian path problem for general grid graphs is NP-complete. In this paper, we give necessary conditions for the existence of a Hamiltonian path between two given vertices in an odd-sized rectangular grid graph with a rectangular hole. In addition, we show that how such paths can be computed in linear time.  相似文献   

12.
We focus on the large field of a hyperbolic potential form, which is characterized by a parameter f, in the framework of the brane-world inflation in Randall-Sundrum-II model. From the observed form of the power spectrum P R (k), the parameter f should be of order 0.1m p to 0.001m p , the brane tension must be in the range λ ~ (1?10)×1057 GeV4, and the energy scale is around V0 1/4 ~ 1015 GeV. We find that the inflationary parameters (n s , r, and dn s /d(ln k) depend only on the number of e-folds N. The compatibility of these parameters with the last Planck measurements is realized with large values of N.  相似文献   

13.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

14.
A new representation is proved of the solutions of initial boundary value problems for the equation of the form u xx (x, t) + r(x)u x (x, t) ? q(x)u(x, t) = u tt (x, t) + μ(x)u t (x, t) in the section (under boundary conditions of the 1st, 2nd, or 3rd type in any combination). This representation has the form of the Riemann integral dependent on the x and t over the given section.  相似文献   

15.
Suppose we have a parallel or distributed system whose nodes have limited capacities, such as processing speed, bandwidth, memory, or disk space. How does the performance of the system depend on the amount of heterogeneity of its capacity distribution? We propose a general framework to quantify the worst-case effect of increasing heterogeneity in models of parallel systems. Given a cost function g(C,W) representing the system’s performance as a function of its nodes’ capacities C and workload W (such as the makespan of an optimum schedule of jobs W on machines C), we say that g has price of heterogeneity α when for any workload, cost cannot increase by more than a factor α if node capacities become arbitrarily more heterogeneous. The price of heterogeneity also upper bounds the “value of parallelism”: the maximum benefit obtained by increasing parallelism at the expense of decreasing processor speed. We give constant or logarithmic bounds on the price of heterogeneity of several well-known job scheduling and graph degree/diameter problems, indicating that in many cases, increasing heterogeneity can never be much of a disadvantage.  相似文献   

16.
Let G be a finite nontrivial group with an irreducible complex character χ of degree d = χ(1). According to the orthogonality relation, the sum of the squared degrees of irreducible characters of G is the order of G. N. Snyder proved that, if G = d(d + e), then the order of the group G is bounded in terms of e for e > 1. Y. Berkovich demonstrated that, in the case e = 1, the group G is Frobenius with the complement of order d. This paper studies a finite nontrivial group G with an irreducible complex character Θ such that G ≤ 2Θ(1)2 and Θ(1) = pq where p and q are different primes. In this case, we have shown that G is a solvable group with an Abelian normal subgroup K of index pq. Using the classification of finite simple groups, we have established that the simple non-Abelian group, the order of which is divisible by the prime p and not greater than 2p 4 is isomorphic to one of the following groups: L 2(q), L 3(q), U 3(q), S z(8), A 7, M 11, and J 1.  相似文献   

17.
Abstract—In the projective plane PG(2, q), a subset S of a conic C is said to be almost complete if it can be extended to a larger arc in PG(2, q) only by the points of C \ S and by the nucleus of C when q is even. We obtain new upper bounds on the smallest size t(q) of an almost complete subset of a conic, in particular,
$$t(q) < \sqrt {q(3lnq + lnlnq + ln3)} + \sqrt {\frac{q}{{3\ln q}}} + 4 \sim \sqrt {3q\ln q} ,t(q) < 1.835\sqrt {q\ln q.} $$
The new bounds are used to extend the set of pairs (N, q) for which it is proved that every normal rational curve in the projective space PG(N, q) is a complete (q+1)-arc, or equivalently, that no [q+1,N+1, q?N+1]q generalized doubly-extended Reed–Solomon code can be extended to a [q + 2,N + 1, q ? N + 2]q maximum distance separable code.
  相似文献   

18.
An algorithm of indefinite summation of rational functions is proposed. For a given function f(x), it constructs a pair of rational functions g(x) and r(x) such that f(x) = g(x + 1) ? g(x) + r(x), where the degree of the denominator of r(x) is minimal, and, when this condition is satisfied, the degree of the denominator of g(x) is also minimal.  相似文献   

19.
We consider the k-Server problem under the advice model of computation when the underlying metric space is sparse. On one side, we introduce Θ(1)-competitive algorithms for a wide range of sparse graphs. These algorithms require advice of (almost) linear size. We show that for graphs of size N and treewidth α, there is an online algorithm that receives O (n(log α + log log N))* bits of advice and optimally serves any sequence of length n. We also prove that if a graph admits a system of μ collective tree (q, r)-spanners, then there is a (q + r)-competitive algorithm which requires O (n(log μ + log log N)) bits of advice. Among other results, this gives a 3-competitive algorithm for planar graphs, when provided with O (n log log N) bits of advice. On the other side, we prove that advice of size Ω(n) is required to obtain a 1-competitive algorithm for sequences of length n even for the 2-server problem on a path metric of size N ≥ 3. Through another lower bound argument, we show that at least \(\frac {n}{2}(\log \alpha - 1.22)\) bits of advice is required to obtain an optimal solution for metric spaces of treewidth α, where 4 ≤ α < 2k.  相似文献   

20.
This paper proposes a strengthening of the author’s core-accessibility theorem for balanced TU-cooperative games. The obtained strengthening relaxes the influence of the nontransitivity of classical domination αv on the quality of the sequential improvement of dominated imputations in a game v. More specifically, we establish the k-accessibility of the core C v ) of any balanced TU-cooperative game v for all natural numbers k: for each dominated imputation x, there exists a converging sequence of imputations x0, x1,..., such that x0 = x, lim x r C v ) and xr?m is dominated by any successive imputation x r with m ∈ [1, k] and rm. For showing that the TU-property is essential to provide the k-accessibility of the core, we give an example of an NTU-cooperative game G with a ”black hole” representing a nonempty closed subset B ? G(N) of dominated imputations that contains all the α G -monotonic sequential improvement trajectories originating at any point xB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号