首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The significance of proteomic research is coupled with the recent exponential growth of these investigations. Currently, the most popular techniques used for these studies include the coupling of 1- and 2-dimensional electrophoresis with mass spectrometric analysis of the extracted and digested proteins. However, detection limits of gel staining methods have led to a search for complimentary techniques that afford the detection of lower concentrations of biologically relevant proteins. In the present studies, we have evaluated the applicability of on-line capillary electrophoresis - mass spectrometry (CE-MS) for this application. Specifically, we used membrane preconcentration-CE-MS (mPC-CE-MS) to analyze 13 samples of human aqueous humor (AH) from patients with various ocular pathologies (cataract, cataract plus glaucoma, and cataract plus pseudoexfoliation syndrome). This approach enabled rapid analysis of a relatively large volume (1 microL of each specimen, and a protein map for each was created. Measured average molecular weights (Mr) were used to tentatively identify proteins after search of the SWISS-PROT database using TagIdent from ExPaSy. Among those proteins tentatively identified are beta-2 microglobulin (Mr 11731.2), apolipoprotein A1 (Mr 28078.6) and serum albumin (Mr 66400). Proteins with Mr of 4349 (unidentified), 11731.2 (beta-2 microglobulin), 13400-14100 (immunoglobulin fragments), 28078.2 (apolipoprotein A1) and approximately 68000 (serum albumin) were observed in the majority of specimens. Generally no significant differences were noted in the protein composition of aqueous humor samples from different pathologies. However, the absence of an Mr 13345 protein and its oxidized form (Mr 13361) in samples from patients with pseudoexfoliation syndrome was noted. Occasionally the alpha-and beta-chains of hemoglobin, a contaminant in aqueous humor introduced during sampling, were also detected. We conclude from these studies that mPC-CE-MS is an attractive complimentary technique for proteome research, as this approach enables direct mapping and characterization of low concentrations of proteins that are present in complex physiologically derived fluids.  相似文献   

3.
The use of capillary electrophoresis (CE) for the separation of small organic molecules such as pharmaceutical agents and drug/xenobiotic metabolites has become increasingly popular. This has arisen, at least in part, from the complimentary mode of separation afforded by CE when compared to the more mature technique of HPLC. Other qualities of CE include relative ease of method of development, rapid analysis, and low solvent consumption. The recent introduction of a variety of detector systems (including UV diode array, laser-induced fluorescence, conductivity) and the demonstrated coupling of CE to MS have also aided acceptance of this technology. In the present report, we review the role of CE coupled to various detector systems including a mass spectrometer for the characterization of both in vitro and in vivo derived drug metabolite mixtures. Attributes of CE for this application are demonstrated by discussion of metabolism studies of the neuroleptic agent haloperidol. Various aspects of the development and use of CE and CE-MS for the characterization of haloperidol metabolites, including criteria for selection of parameters such as pH, ionic strength, extent of organic modification, and the use of nonaqueous capillary zone electrophoresis are discussed. We also consider potential limitations of CE and CE-MS for drug metabolism research and describe the introduction of membrane preconcentration-CE (mPC-CE) and mPC-CE-MS as a solution that overcomes the rather poor concentration limits of detection of CE methods without compromising the resolution of analytes or separation efficiency of this technique.  相似文献   

4.
Capillary electrophoresis (CE) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) were combined in an off-line arrangement to provide separation and mass analysis of peptide and protein mixtures in the attomole range. A membrane target, precoated with MALDI matrix, was used for the continuous deposition of effluent exiting from a CE device. A sample track was produced by linear movement of the target during the electrophoretic separation and this track was subsequently analyzed by MALDI/MS. The technique is effective for peptides and proteins, having limits of detection (signal-to-noise >3) of about 50 amol for neurotensin (1673 Da) and 250 amol for cytochrome c (12361 Da) and apomyoglobin (16951 Da). The electrophoretic separation achieved from the membrane target, as measured by theoretical plate numbers from the mass spectrometric data, can be as high as 80-90% of that achieved by on-line UV detection under optimal conditions, although band broadening occurs and with some loss of separation efficiency. Non-volatile buffers such as 10-50 mM phosphate can also be used in the electrophoresis process and directly deposited on the membrane. The use of post-source decay techniques is shown for peptides in the CE sample track in order to obtain sequence verification. The effectiveness of this method of integration of CE and MALDI/MS is demonstrated with both peptide and protein mixtures and with the analysis of a tryptic digest of a protein.  相似文献   

5.
Capillary electrophoresis/electrospray ionization (CE/ESI) high mass accuracy time-of-flight mass spectrometry was used for the first time to characterize small proteins using peptide mapping. To identify small proteins, the intact proteins were first analyzed to obtain their average molecular weights with errors less than 1 Da. On-line capillary electrophoresis mass spectrometry of the tryptic digests of these small proteins was then performed to obtain the accurate molecular weights of the peptides with accuracies of approximately 10 ppm. Next, this information was used for the identification of the proteins using a protein database. It was found that high mass accuracy is an effective tool in reducing the list of most-likely proteins generated by the database. In addition, on-line collision-induced dissociation of the completely or partially resolved capillary electrophoresis peaks of the protein digests was used to unambiguously identify the sequences of these peptides. Each CE/ESI-MS analysis used only 5 nL of sample containing approximately 120 fmol of each peptide in protein digests. The results indicate that the combination of capillary electrophoresis and high resolution, high mass accuracy time-of-flight mass spectrometry is a viable option for the identification of small proteins using peptide mapping.  相似文献   

6.
The use of an on-line adsorption preconcentrator coupled with capillary zone electrophoresis/nanoelectrospray mass spectrometry (PC/CZE/nESMS) is described for the analysis of peptides and protein digests. The investigation was focused on the production of disposable preconcentrators made of large particle size (40 microns irregular packing), thereby eliminating the use of a retaining frit without loss of performance. These preconcentration devices were made of commercially available components which can be easily interfaced to current CZE/nESMS systems. Practical issues such as the composition of the stationary phase, the elution volume and sample breakthrough and carry-over were evaluated in order to optimize the analytical performance of this technique. Under optimized elution conditions, the PC/CZE/nESMS technique provided separation efficiencies in excess of 100,000 theoretical plates for a sample loading of 8 microliters. Sample carry-over was minimized by proper reconditioning of the preconcentrator prior to the CZE separation. Alternatively, the sample carry-over resulting from small elution volumes could be used advantageously to provide multiple analyses from a single injection of sample. The application of this technique is demonstrated for the analysis of proteolytic peptides from a Bauhinia purpurea lectin at a concentration level of 30 nM. Further structural information was obtained using on-line tandem mass spectrometry to elucidate the structure of N-linked glycans and the amino acid sequences of the glycopeptides.  相似文献   

7.
The use of capillary electrophoresis (CE) for clinically relevant assays is attractive since it often presents many advantages over contemporary methods. The small-diameter tubing that holds the separation medium has led to the development of multicapillary instruments, and simultaneous sample analysis. Furthermore, CE is compatible with a wide range of detectors, including UV-Vis, fluorescence, laser-induced fluorescence, electrochemistry, mass spectrometry, radiometric, and more recently nuclear magnetic resonance, and laser-induced circular dichroism systems. Selection of an appropriate detector can yield highly specific analyte detection with good mass sensitivity. Another attractive feature of CE is the low consumption of sample and reagents. However, it is paradoxical that this advantage also leads to severe limitation, namely poor concentration sensitivity. Often high analyte concentrations are required in order to have injection of sufficient material for detection. In this regard, a series of devices that are broadly termed 'analyte concentrators' have been developed for analyte preconcentration on-line with the CE capillary. These devices have been used primarily for non-specific analyte preconcentration using packing material of the C18 type. Alternatively, the use of very specific antibody-containing cartridges and enzyme-immobilized microreactors have been demonstrated. In the current report, we review the likely impact of the technology of capillary electrophoresis and the role of the CE analyte concentrator-microreactor on the analysis of biomolecules, present on complex matrices, in a clinical laboratory. Specific examples of the direct analysis of physiologically-derived fluids and microdialysates are presented, and a personal view of the future of CE in the clinical environment is given.  相似文献   

8.
Microcolumn liquid chromatography (LC) was interfaced with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for separation and identification of peptides present in single neurons from the brain of the snail Lymnaea stagnalis. The nanoliter microcolumn LC effluent, mixed off-line with nanoliter matrix solution, was deposited onto the sample target every 60 s, producing fractions of approximately 145 nL in volume, which, upon drying, produced spots of approximately 1 mm in size. At the end of the chromatographic separation, fractions from the sample target were scanned by MALDI-TOF-MS. Identification of peptide peaks was achieved on the basis of LC elution order and mass information. Further identification based on sequence information was carried out for a native peptide fractionated by microcolumn LC from a single neuron with the postsource decay technique.  相似文献   

9.
An on-line immunoaffinity extraction with liquid chromatography/membrane introduction mass spectrometry (IAE/LC/MIMS) method for the determination of BTEX compounds in complex sample matrixes is described. This method uses an immunoaffinity column (1 mm i.d. x 20 mm) for on-line sample cleanup and enrichment, a 5-micron C18 trapping column (2 mm i.d. x 20 mm) for analyte focusing, a 3-micron C18 analytical column (3.2 mm i.d. x 100 mm) for separation, and a membrane introduction mass spectrometer for quantitation. The immunoaffinity column was evaluated in terms of binding capacity, recovery, and enrichment factor. The method was optimized for the determination of BTEX compounds in a mixture of 30 volatile organic compounds, which showed no matrix interference and a dramatic improvement of the detection limit over that of the LC/MIMS method (up to 474-fold). This method was also used for the determination of BTEX compounds in several gasoline-contaminated water samples, and the results were compared with the EPA reference methods.  相似文献   

10.
Capillary electrophoresis (CE) provides high separation efficiency and thus is suitable for the analysis of complex mixtures of structurally similar compounds. The versatile nature of CE can be realised by controlling the chemistry of the inner capillary wall, by modifying the electrolyte composition and by altering the physicochemical properties of the analyte. A CE method has been developed for the separation of three macrolide antibiotics, erythromycin, oleandomycin and josamycin. A systematic approach was used to maximise analyte differential electrophoretic mobility by manipulating electrolyte pH, molarity and composition. In addition, some instrumental parameters such as capillary length and diameter and applied voltage were varied. The effect of the sample solvent and on-capillary concentrating techniques such as field amplified sample injection were investigated. Also, the influence of the injection of a water plug on the quantity of sample injected was demonstrated. The macrolides were completely resolved in less than 30 min in a 100 cm x 75 microm I.D. fused-silica uncoated capillary with a Z-shaped flow cell of path-length 3 mm. The analysis was performed in a 75 mM phosphate buffer (pH 7.5) with 50% (v/v) methanol and an applied voltage of 25 kV was selected to effect the separation.  相似文献   

11.
A new fluorogenic reagent, 2-methyl-3-oxo-4-phenyl-2,3-dihydrofuran-2-yl acetate, has been developed for the analysis of primary amines and aminated carbohydrates by means of HPLC, CE, and MALDI/MS. Peptides at 1 pmol (2 x 10(-7) M) levels were successfully labeled and analyzed through CE. The fluorescent derivatives have good stability in both acidic and basic solutions, making their further manipulation and structural analysis possible. The derivatives can be analyzed in reversed-phase HPLC due to the hydrophobic nature of this fluorescent tag. Characteristic elution intervals between the diastereomeric peaks of the chiral peptide derivatives may be used in structural verification. The labeled peptides and neutral oligosaccharides are also readily detectable through MALDI/MS in its positive mode.  相似文献   

12.
Understanding the separation process in capillary electrophoresis (CE) leads to the unification of the theories for separation science. While the separation of analytes is governed by equilibria in chromatography, and by (centrifugal) field in ultracentrifugation, the separation in CE is governed by both equilibria and (electric) field. Therefore, a comprehensive separation theory that describes the separation process of analytes in CE should be able to describe the separation processes in both chromatography and ultracentrifugation. In this paper, we propose that individual capacity factors for each analyte species be used to describe the migration behavior of an analyte. The effect of field on each analyte species, as well as the effect of equilibria are considered in deriving a generalized equation that is applicable for all separation techniques. The separation factor defined at present does not directly relate to the migration rates of the analytes, and therefore can not be used in a generalized theory. We propose that the ratio of the migration rates of a pair of analytes (gamma) should be used as the separation factor, instead of the ratio of the two capacity factors. When gamma is used to describe the separation of two closely migrating analytes, all separation techniques have the same resolution equation.  相似文献   

13.
An approach has been developed to the on-line extraction and identification of clinical disease-state marker proteins in human serum. Fabrication of capillaries with integral packed beds for the online determination of human cardiac troponin I (cTnI), a diagnostic marker for myocardial infarction, at clinically relevant levels (2 nmol/L) in serum is demonstrated. The technique, termed precolumn affinity capillary electrophoresis (PA-CE), utilizes a short (approximately 5 mm) packed bed of porous silica containing covalently immobilized monoclonal anti-cTnI antibodies directly integrated within a separation capillary for the selective retention of cTnI from a complex matrix. Following a rinsing step to eliminate nonspecifically bound serum proteins and other impurities from the column, desorption of the antigen into the separation region of the PA-CE capillary for subsequent measurement of femto-molar amounts of cTnI by CE is effected by the injection of an appropriate elution buffer. Advantages of this approach over previously reported affinity preconcentration techniques, related applications for PA-CE technology, and its potential for use in the development of a certified reference material for cTnI in serum are discussed.  相似文献   

14.
A heparin-binding peptide fragment from chymotrypsin-treated human serum amyloid P component (SAP) was demonstrated by affinity CE. The peptide was found in a fraction of peptides that were not separated well by reversed-phase HPLC. On the basis of mass determination by laser desorption mass spectrometry after preparative CE, the fragment could be placed in the parent protein structure. Thus, in the course of the study of structure-function relationships of SAP, CE was helpful for the examination of peptide fragments from proteolytic digests that were poorly separated by standard reversed-phase HPLC methods and for the purification of peptides in the mixture.  相似文献   

15.
Increased concentration of proteins in urine as well as abnormal patterns are seen in many disorders such as various renal disorders and light chain disease. At the wavelength of 214 nm used for detection of the peptide bond, numerous compounds interfere in the analysis of urinary proteins. We show that either adsorptive filtration with a wash step or cold ethanol precipitation are two methods which can eliminate many of the interferences. The wash step is rapid, greatly reduces the interfering substances, and decreases the effect of sample matrix. Both of these methods yield results comparable to the traditional agarose method. Capillary electrophoresis (CE) is faster and more cost-effective than agarose electrophoresis.  相似文献   

16.
Peptides derived from the alpha 1-region of the murine H-2Dk molecule enhance glucose uptake in rat adipose cells above the maximum obtained with insulin stimulation alone (Stagsted, J., Reaven, G. M., Hansen, T., Goldstein, A., and Olsson, L. (1990) Cell 62, 297-307). We now describe that epidermal growth factor (EGF) in combination with the same peptides, Dk-(61-85) and Dk-(62-85), stimulates cellular glucose uptake 5-7 times over the basal level, i.e. to 30-50% of the maximal insulin effect. EGF alone increased glucose uptake by only approximately 50% above basal and the peptide alone by 100% above basal. Maximal effect of EGF and peptide was reached in 10-20 min with 30 microM peptide (EC50 10-15 microM) and 50 nM EGF (EC50 1-2 nM). The effect of EGF and peptide on glucose uptake was additive to that of insulin and peptide until the maximal level attained with insulin and peptide was reached. The combined effect of EGF plus peptide on glucose transport was associated with a recruitment of GLUT4 molecules to the plasma membrane. However, the phosphatidylinositol (PI) kinase which is activated by insulin was not activated by EGF plus peptide. Thus, the effect of EGF plus peptide on glucose uptake seems independent of the activity status of the insulin receptor. 125I-Labeled EGF bound specifically to rat adipose cells with an apparent affinity of approximately 2 nM and Bmax approximately 5 x 10(3). However, the major histocompatibility complex (MHC) peptides did not affect EGF-stimulated internalization of EGF receptor, in contrast to their effect on the insulin receptors. Transforming growth factor alpha had an effect similar to EGF on glucose uptake. Three other peptides derived from other parts of murine MHC class I had no effect on glucose uptake in combination with EGF. Thus, EGF in combination with certain MHC class I-derived peptides is insulinomimetic concerning glucose transport and this effect is independent of the insulin receptor activity.  相似文献   

17.
Beta-sheets, in the form of the beta-barrel folding motif, are found in several constitutive membrane proteins (porins) and in several microbial toxins that assemble on membranes to form oligomeric transmembrane channels. We report here a first step towards understanding the principles of beta-sheet formation in membranes. In particular, we describe the properties of a simple hydrophobic hexapeptide, acetyl-Trp-Leu5 (AcWL5), that assembles cooperatively into beta-sheet aggregates upon partitioning into lipid bilayer membranes from the aqueous phase where the peptide is strictly monomeric and random coil. The aggregates, containing 10 to 20 monomers, undergo a relatively sharp and reversible thermal unfolding at approximately 60 degreesC. No pores are formed by the aggregates, but they do induce graded leakage of vesicle contents at very high peptide to lipid ratios. Because beta-sheet structure is not observed when the peptide is dissolved in n-octanol, trifluoroethanol or sodium dodecyl sulfate micelles, aggregation into beta-sheets appears to be an exclusive property of the peptide in the bilayer membrane interface. This is an expected consequence of the hypothesis that a reduction in the free energy of partitioning of peptide bonds caused by hydrogen bonding drives secondary structure formation in membrane interfaces. But, other features of interfacial partitioning, such as side-chain interactions and reduction of dimensionality, must also contribute. We estimate from our partitioning data that the free energy reduction per residue for aggregation is about 0.5 kcal mol-1. Although modest, its aggregate effect on the free energy of assembling beta-sheet proteins can be huge. This surprising finding, that a simple hydrophobic hexapeptide readily assembles into oligomeric beta-sheets in membranes, reveals the potent ability of membranes to promote secondary structure in peptides, and shows that the formation of beta-sheets in membranes is more facile than expected. Furthermore, it provides a basis for understanding the observation that membranes promote self-association of beta-amyloid peptides. AcWL5 and related peptides thus provide a good starting point for designing peptide models for exploring the principles of beta-sheet formation in membranes.  相似文献   

18.
The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.  相似文献   

19.
A method for the analysis of O-glycosylation of peptides has been developed, combining capillary electrophoretic (CE) separation and electrospray ionization mass spectrometry. Synthetic peptides with apomucin 'tandem repeat' sequences which present potential O-glycosylation sites on threonine and serine residues were used as model system. In vitro O-glycosylated peptide samples were obtained by incubation of the peptides with human gastric microsomal homogenates containing N-acetylgalactosamine transferase activity in the presence of uridyl diphosphate N-acetylgalactosamine (UDP-GalNAc). CE was carried out in the presence of the linear polymer poly(vinyl alcohol) in the electrophoresis solvent, resulting in a greatly improved separation of the up to five different glycoforms of peptides with lengths of 8, 16 or 23 amino acids, and the unglycosylated peptides. After separation and peak collection, the number of modifications with N-acetyl galactosamine (GalNAc) could be determined by electrospray ionization mass spectrometry. The glycosylation pattern was shown to depend on the amino acid sequence of the peptides.  相似文献   

20.
An on-line sample concentration method using sample matrix switching and field amplification peak stacking has been developed. A microbore LC guard column is used to slightly retain the analytes in order to switch from a high ionic strength sample matrix (the physiological fluid) to a low ionic strength matrix (the LC mobile phase). The eluted LC peak is then trapped in a CE system and preconcentrated by field amplification peak stacking. The concentrated sample peak is then analyzed by CE. Compared to normal hydrodynamic injection, the sensitivity was increased by more than 500-fold without loss in resolution. A limit of detection of less than 10 nM for a physiological sample was achieved using UV adsorption detection. This method can be used for negatively or positively charged analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号