首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脉冲涡流是一种可以对飞机多层铆接结构中缺陷进行有效检测的无损检测技术。本文通过研究低频涡流与脉冲涡流检测技术,设计和实现了圆柱形差分检测传感器,对铆钉周围出现的缺陷进行了检测。通过轴向扫描时获得的峰值曲线对缺陷的轴向宽度进行了定量检测。通过缺陷的瞬态感应电压信号,利用峰值、过零时间等特征量对缺陷造成的不连续性和损耗程度进行了检测分析。试验结果证明文中设计的圆柱形差分传感器可以对多层铆接结构中的缺陷进行有效检测,低频脉冲技术在飞机铆接结构缺陷的检测中具有很好的使用前景。  相似文献   

2.
传统的涡流检测技术由于集肤效应的影响,很难有效的检测多层结构中的腐蚀缺陷。本文通过研究低频涡流与脉冲涡流技术,设计研制了一套完整的腐蚀缺陷检测分析系统。在对检测信号进行定量分析的基础上,通过峰值、过零时间等特征量实现了多层结构中腐蚀缺陷的定量检测。  相似文献   

3.
传统脉冲涡流检测技术对缺陷的检测灵敏度不高,需采用差分的方法来增强缺陷信息.本文提出了一种改进型的脉冲涡流无损检测方法,其无需差分就可以对缺陷进行定量,具有较大的理论价值和应用价值,采用改进的脉冲涡流技术对腐蚀缺陷的深度和体积进行了检测,并采用一种新的"频谱分离点"的腐蚀缺陷识别方法,提高了腐蚀缺陷分类识别的正确率.  相似文献   

4.
某型航空发动机篦齿盘裂纹的原位涡流检测   总被引:1,自引:0,他引:1  
针对某型航空发动机篦齿盘上产生的裂纹缺陷,在不拆分发动机的前提下,提出采用涡流检测的方法对篦齿盘进行原位无损检测.设计完成了一套可用于篦齿盘裂纹原位检测的涡流无损检测系统.采用正交型锁相放大器对涡流检测信号进行处理,提高了信号检测精度同时达到了抑制干扰的作用.在标准检测试件和模拟试件上分别进行了试验,试验结果表明,该涡流检测系统可以实现航空发动机篦齿盘裂纹缺陷的原位检测,并且可以定性判断裂纹的深度.  相似文献   

5.
铁磁性管道腐蚀远场涡流检测性能的改进   总被引:1,自引:0,他引:1  
远场涡流检测由于信号微弱、探头过长等缺点限制了其进一步应用.本文结合有限元仿真和实验方法,研究了改进远场涡流技术性能的几种方法,即: 采用电磁屏蔽、磁路进行传感器优化设计以缩短探头长度、增大信号强度;改进信号调理电路以提高细微缺陷检出能力;利用同态滤波、小波变换以及误差修正等数字信号处理技术确保检测结果的可靠性.实验结果表明,采用上述方法后系统性能得到很大提高,可以有效检测出管道外壁的细微缺陷.  相似文献   

6.
对碳纤维增强树脂基复合材料(CFRP)的细观结构成像方法进行了研究,利用涡流成像技术实现了CFRP层合板中纤维方向及纤维缺失、褶皱和空隙过大等缺陷的可视化。首先通过有限元仿真和电路理论分析了CFRP板中涡流的生成机制和分布特性,阐述了基于涡流法的CFRP细观结构成像机制。然后介绍了用于扫描成像的高频涡流检测(HF-ECT)实验系统并确定了涡流探头的形式及其参数。最后利用涡流成像技术分别对单层板、正交层合板和四方向斜交层合板进行了检测,绘制了涡流检测(ECT)信号的三维伪彩图并得到了清晰的纤维纹路分布。通过引入滤波去噪技术和二维快速傅里叶变换(2D-FFT)对图像进行进一步处理,提高了图像分辨率并完成了不同方向上纤维纹路的分离,从而实现对层合板每单向层中缺陷的精确定位。  相似文献   

7.
基于集成霍尔传感器的脉冲涡流无损检测装置   总被引:2,自引:1,他引:1  
脉冲涡流是近几年新发展起来的一种无损检测技术 ,与传统涡流不同 ,脉冲涡流通过测量磁场最大值出现的时间来确定缺陷的位置。本文采用集成霍尔传感器来对脉冲涡流产生的磁场进行测量 ,试验结果证明集成霍尔传感器使用简单、灵敏度高 ,适于在低频时对弱磁场进行定量检测。  相似文献   

8.
脉冲涡流技术是一种可以对飞机多层结构中缺陷实施有效检测的方法。交变磁场测量技术是一种精确测量表面裂纹的非接触式无损检测方法。提出了脉冲涡流磁场测量(PECFM)技术,并对其进行了理论分析。在设计了相应传感器的基础上,对多层铝板结构中的缺陷进行了检测实验,实验结果与理论分析相一致。实验证明PECFM技术可以有效地实现多层结构中缺陷的识别与定量检测。可以预见,PECFM技术将会在无损检测领域中发挥很大的作用。  相似文献   

9.
对飞机多层结构中出现的缺陷进行定量检测具有重要意义.文章将脉冲涡流检测技术应用其中,设计并实现了一套完整的脉冲涡流检测系统.在对检测信号进行分析处理的基础上,提取峰值、峰值时间、过零时间等时域特征量,实现对缺陷的定量检测,并通过进一步的实验加以验证.  相似文献   

10.
脉冲涡流检测技术(PEC)是近几年发展起来的一种新的无损检测方法。本文围绕应用于飞机多层金属结构中缺陷检测的脉冲涡流无损检测系统的工作点进行分析与研究,给出了传感器的参数设定;通过改变激励脉冲信号的重复频率和占空比,对得到检测信号的时域、频域特征量及其变化值进行数据分析和处理;最后给出了最优化的系统工作点,并通过进一步的实验给以验证。  相似文献   

11.
本文介绍利用矩形脉冲涡流传感器的自差分特性来提高缺陷检测能力,并最终实现对表面缺陷的成像检测.采用ANSYS软件建立了矩形脉冲涡流传感器的仿真模型,对铝板表面涡流分布进行了仿真分析,结果表明:矩形传感器能够在铝板表面激励出均匀的感应涡流,当有缺陷存在时,提取Z向和Y向感应信号的幅值扫描曲线可以实现对表面缺陷长度和深度的定量.并对仿真结果进行了实验验证,得到了表面缺陷的成像结果.研究结果表明,该矩形脉冲涡流传感器可以很好的实现对表面缺陷的定量评估及成像检测.  相似文献   

12.
电磁超声检测和涡流检测因其非接触、检测速度快、对试件表面要求低等优点而被广泛应用于金属材料的缺陷检测中,但电磁超声检测存在近表面的检测盲区,涡流检测对内部深层缺陷灵敏度不高。基于电磁超声和涡流的复合检测方法,设计了能同时满足电磁超声检测和涡流检测的复合式探头,建立了电磁超声和涡流复合检测有限元模型,并对金属试件中不同类型的缺陷进行了检测实验。仿真和实验结果表明,该复合探头不仅能快速检测表面裂纹,而且可激发出具有明显指向性的纵波,一定程度上削弱了波形转换产生的干扰波,可实现对内部缺陷的准确定位、识别,为电磁超声和涡流复合式检测技术在板材的复杂缺陷检测中的应用提供了基础。  相似文献   

13.
将脉冲远场涡流检测技术应用于对非磁性金属平板的无损检测中,设计了一种新型脉冲远场涡流检测传感器,并通过仿真分析对传感器参数进行了优化.在此基础上,通过提取检测信号最后一个过零时间作为特征量,实现了对非磁性平板上、下表面缺陷的定量检测.仿真结果表明,优化后传感器尺寸更小,并且可以较好的实现对非磁性金属平板中缺陷的定量检测.  相似文献   

14.
涡流无损检测成像技术研究进展   总被引:1,自引:0,他引:1  
涡流检测是对非铁磁性金属设备进行无损检测的常用手段。随着工业技术的不断发展,涡流无损检测技术对缺陷可视化提出了较高的要求。因此,引入阻抗扫描成像、磁光涡流成像以及涡流层析成像三种主要的涡流无损检测成像技术,分别对成像原理、研究现状进行了概述。同时对其优缺点以及应用特点进行了对比和分析,最后就涡流无损检测成像技术研究及发展趋势进行了预测与总结。为涡流无损检测成像技术的综合应用与发展提供参考。  相似文献   

15.
为了研究电磁涡流无损检测技术在金属板损伤探测上的应用,根据电涡流检测原理,设计了基于电磁差动传感器和FPGA的检测系统,实现对涡流传感器的正弦激励和阻抗分析.对不同长度、深度和材质的缺陷金属板进行了实验探测.通过对采集信号的相敏解调发现了阻抗变化的特征值与金属缺陷特征的对应关系.理论分析和实验测试表明该系统能较准确地检测出金属表面及内部的损伤.  相似文献   

16.
红外热成像无损检测技术作为潜力巨大的无损检测与评估技术正受到广泛关注。通过对涡流热成像、光学热成像和超声热成像3种无损检测技术的比较研究,探讨它们的理论基础、检测系统、应用领域、数据获取与处理、检测效率与精准度等,并对涡流热成像无损检测技术在缺陷检测与评估研究中的热点和应用前景进行分析展望。  相似文献   

17.
介绍了涡流阵列榆测技术的检测原理,针对涡流阵列几项关键技术的国内外发展现状进行了深入研究,如涡流阵列探头设计、激励检测模式、多路复用技术与处理技术、缺陷特征提取、分类识别和成像技术、阵列检测技术与其他检测方法的集成等,并详细阐述了阵列检测技术的发展及重要应用.  相似文献   

18.
王亚  金瓯 《硅谷》2009,(11)
从电涡流传感器的基本原理出发,提出使用高频反射式和低频透射式的双路涡流传感器技术,用于硬币识别检测装置中对硬币的材质、厚度等参数进行综合检测,提升硬币的检测识别率。  相似文献   

19.
X-R正交分解技术在涡流检测中的应用   总被引:8,自引:0,他引:8  
本文介绍了应用于涡流检测系统中的X-R正交分解器原理及实现,并从不同的误差来源对其进行了分析,给出了X-R正交分解器的应用结果及特点。  相似文献   

20.
随着电磁理论及其实验的不断发展与完善,促进了涡流检测等无损检测与评估技术的不断发展。在理论上,分析了脉冲涡流线圈中电涡流强度与检测距离以及电涡流强度和输入频率之间的关系。通过试验,分析了激励脉冲的频率、占空比因素对脉冲涡流检测系统的影响。对采集得到的数据进行分析,可以发现感应电压信号的面积差与检测距离有密切的关系,证明了采用脉冲涡流技术检测的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号