首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
混凝法去除水体中邻苯二甲酸二甲酯   总被引:1,自引:0,他引:1  
研究采用强化混凝法去除水体中特征性有机污染物邻苯二甲酸酯类化合物(PAEs).以邻苯二甲酸二甲酯(DMP)为目标物,阳离子混凝剂聚二甲基二烯丙基氯化铵(PDMDAAC)与聚丙烯酰胺(CPAM)为混凝剂,对含DMP的水体进行强化混凝处理,混凝处理后水体中DMP的残余浓度采用高效液相色谱法(HPLC)测定.研究内容还包括混...  相似文献   

2.
受典型除草剂污染原水的应急处理工艺研究   总被引:1,自引:0,他引:1  
以水中阿特拉津和莠灭净浓度突增为背景,研究了混凝、PAC吸附和PAC吸附+混凝等工艺对它们的去除效率,同时根据原水水质的变化和水厂的常用工艺,分别考察了混凝剂投加量、pH值、预氧化对混凝去除阿特拉津和莠灭净的影响,以及目标物初始浓度、天然有机物浓度和预氧化对PAC吸附的影响。结果表明,调节pH值及采取预氧化措施均能改善混凝对阿特拉津和莠灭净的去除效果,但其出水浓度仍不能达标;天然有机物浓度对PAC吸附的影响并非是简单的线性关系,同时投加氧化剂和PAC会相互削弱其作用,PAC吸附+混凝才是去除阿特拉津和莠灭净最简单、有效的方法。  相似文献   

3.
Yan M  Wang D  Ni J  Qu J  Chow CW  Liu H 《Water research》2008,42(13):3361-3370
The mechanism of natural organic matter (NOM) removal by AlCl(3) and polyaluminum chloride (PACl) was investigated through bench-scale tests. The fraction distributions of NOM and residual Al after coagulation in solution, colloid and sediment were analyzed as changes of coagulant dosage and pH. The influence of NOM, coagulant dose and pH on coagulation kinetics of AlCl(3) was investigated using photometric dispersion analyzer compared with PACl. Monomeric Al species (Al(a)) shows high ability to satisfy some unsaturated coordinate bonds of NOM to facilitate particle and NOM removal, while most of the flocs formed by Al(a) are small and difficult to settle. Medium polymerized Al species (Al(b)) can destabilize particle and NOM efficiently, while some flocs formed by Al(b) are not large and not easy to precipitate as compared to those formed by colloidal or solid Al species (Al(c)). Thus, Al(c) could adsorb and remove NOM efficiently. The removal of contaminant by species of Al(a), Al(b) and Al(c) follows mechanisms of complexation, neutralization and adsorption, respectively. Unlike preformed Al(b) in PACl, in-situ-formed Al(b) can remove NOM and particle more efficiently via the mechanism of further hydrolysis and transfer into Al(c) during coagulation. While the presence of NOM would reduce Al(b) formed in-situ due to the complexation of NOM and Al(a).  相似文献   

4.
Effects of pre-ozonation on the removal of THM precursors by coagulation   总被引:2,自引:0,他引:2  
Pre-ozonation in combination with enhanced coagulation was used to remove NOM from lake water as to control the formation of disinfection by-products, DBPs. The effect of the hydrophobicity/hydrophilicity nature of NOM on the performance of the combined pre-ozonation and coagulation process was studied. The hydrophilicity/hydrophobicity property of NOM was characterized in terms of mass distribution of the phydrophilic and the hydrophobilic fractions of NOM. The optimal condition for the combined pre-ozonation-coagulation was established: pH = ca. 9.0 and ozone dose = 0.45 mg-O3/mg-DOC. Under the optimal condition, it was able to achieve ∼ 60% of THMFP removal. In terms of THMPF, results also indicated that the distribution between the hydrophilic and the hydrophobic fractions of NOM was 57.3 and 98.7 µg-THMFP/mg-DOC, respectively. Ozonation alters the structures and characteristics of NOM thereby affecting the coagulation effectiveness. Pre-ozonation was effective in removing the hydrophobic NOM, with a decrease of THMFP by ∼ 20% versus ∼ 10% for the hydrophilic fraction. The dosage of coagulant also governed DOC removal. The removal of hydrophobic and hydrophilic NOM were in the range of 27-41 and 2.5-22.7%, respectively at alum dosage of 0.41-1.65 (in Al/DOC) and 0.41-1.65 (in Al/DOC) and ozone dose of 0.58-2.93, mg/mg respectively. The adsorption characteristics of the hydrophilic and the hydrophobic fractions of NOM on aluminum hydroxide (from coagulant alum) were studied. Results indicated that the modified Langmuir isotherm of competitive adsorption was able to describe the adsorption of NOM onto hydrous aluminum hydroxide formed during alum coagulation of the lake waters.  相似文献   

5.
Dissolved air flotation (DAF) performance with two different naturally occurring cyanobacterial morphologies was investigated with respect to the biomass removal efficiency, the toxin release to water and the coagulant demand by different water background natural organic matter (NOM). Coagulation (C)/Flocculation (F)/DAF bench-scale experiments (2 min coagulation at 380 s−1 with polyaluminium chloride (0.5-4 mg/L Al2O3, the dose depending on the water NOM content); 8 min flocculation at 70 s−1; 8 min DAF with 5 bar relative pressure and 8% pressurised recycle) were performed with single cells of Microcystis aeruginosa and Planktothrix rubescens filaments spiked in synthetic waters with different NOM contents (hydrophobic vs. hydrophilic NOM; moderate (2-3 mgC/L) vs. moderate-high concentration (ca. 6 mgC/L)). For both morphologies, the results show no apparent cyanobacterial damage (since the water quality did not degrade in dissolved microcystins and the removal of intracellular microcystins matched the removal of chlorophyll a) and high biomass removal efficiencies (93-99% for cells and 92-98% for filaments) provided optimal coagulant dose for chlorophyll a removal was ensured. Charge neutralisation by the polyaluminium chloride was the main coagulation mechanism of the M. aeruginosa cells and most likely also of the P. rubescens filaments. The specific coagulant demand was severely affected by NOM hydrophobicity, hydrophobic NOM (with a specific UV254nm absorbance, SUVA, above 4 L/(m mgC)) requiring ca. the triple of hydrophilic NOM (SUVA below 3 L/(m mgC)), i.e. 0.7 vs. 0.2-0.3 mg Al2O3/mg DOC.  相似文献   

6.
The generation of disinfection by-products during water treatment can be controlled by reducing the levels of precursor species prior to the chlorination step. The Natural Organic Matter (NOM) is the principal organic precursor and conventional removal of pollutants such as coagulation, flocculation and filtration do not guarantee the total NOM removal. In this study the degradation of NOM model compounds (dihydroxy-benzene) as well as the removal of NOM from river water via photo-Fenton process in a CPC solar photo-reactor is presented. The effect of solar activated photo-Fenton reagent at pH 5.0 before and after a slow sand filtration (SSF) in waters containing natural iron species is investigated and the details reported. The results showed that the total transformation of dihydroxy-benzene compounds along a mineralization higher than 80% was obtained. The mineralization of the organic compounds dissolved in natural water was higher than in Milli-Q water, suggesting that the aqueous organic and inorganic components (metals, humic acids and photoactive species) positively affect the photocatalytic process. When 1.0 mg/L of Fe3+ is added to the system, the photo-Fenton degradation was improved. Therefore the photo-Fenton reagent could be an interesting complement to other processes for NOM removal. Comparing the response of two rivers as media for the organic compounds degradation it was observed that the NOM photo-degradation rate depends of the water composition.  相似文献   

7.
Coagulation in drinking water treatment has relied upon iron (Fe) and aluminium (Al) salts throughout the last century to provide the bulk removal of contaminants from source waters containing natural organic matter (NOM). However, there is now a need for improved treatment of these waters as their quality deteriorates and water quality standards become more difficult to achieve. Alternative coagulant chemicals offer a simple and inexpensive way of doing this. In this work a novel zirconium (Zr) coagulant was compared against traditional Fe and Al coagulants. The Zr coagulant was able to provide between 46 and 150% lower dissolved organic carbon (DOC) residual in comparison to the best traditional coagulant (Fe). In addition floc properties were significantly improved with larger and stronger flocs forming when the Zr coagulant was used with the median floc sizes being 930 μm for Zr; 710 μm for Fe and 450 μm for Al. In pilot scale experiments, a similar improved NOM and particle removal was observed. The results show that when optimised for combined DOC removal and low residual turbidity, the Zr coagulant out-performed the other coagulants tested at both bench and pilot scale.  相似文献   

8.
Dai X  Hozalski RM 《Water research》2002,36(14):3523-3532
Laboratory experiments were performed to evaluate the effects of biofilm and natural organic matter (NOM) on removal of Cryptosporidium parvum oocysts from water by filtration. The bench-scale rapid filters consisted of 2.54 cm ID x 30.5 cm polycarbonate plastic columns packed with 0.55 mm spherical glass beads to a depth of 25 cm and a porosity of 40%. Calcium chloride (0.01 M) served as the coagulant in most of the experiments. The oocyst removal efficiency decreased from 51 +/- 6% for a clean bed to 23 +/- 3% for the biofilm-coated bed and to 14 +/- 1% in the presence of 5 ppm of NOM. The oocyst removal for an experiment with a combination of biofilm-coated filter media and NOM was similar to that for the experiment with NOM alone (15 +/- 1%). The zeta potential values for the oocysts pre-equilibrated with NOM were significantly more negative than those obtained for untreated oocysts. This suggests that NOM enhanced the electrostatic repulsion between the oocysts and the negatively charged glass beads. Fortunately, use of alum as coagulant at a dosage sufficient to neutralize the surface charge of the NOM-coated oocysts resulted in a high removal efficiency (73 +/- 6%). Pre-equilibration of the oocysts with NOM also increased the hydrophobicity of the oocysts, but this was deemed to have a negligible effect on deposition onto the glass beads. The results of these experiments suggest that water treatment facilities treating source waters with moderate organic matter concentrations and/or employing biologically active filters have a greater potential for oocyst breakthrough and proper coagulation is critical for effective removal of oocysts in the filters.  相似文献   

9.
This paper focuses on elucidation of the mechanisms involved in the coagulation of peptides and proteins contained in cellular organic matter (COM) of cyanobacterium Microcystis aeruginosa by ferric coagulant. Furthermore, coagulation inhibition due to the formation of Fe-peptide/protein surface complexes was evaluated. The results of coagulation testing imply that removability of peptides and proteins is highly dependent on pH value which determines charge characteristics of coagulation system compounds and therefore the mechanisms of interactions between them. The highest peptide/protein removal was obtained in the pH range of 4-6 owing to charge neutralization of peptide/protein negative surface by positively charged hydrolysis products of ferric coagulant. At low COM/Fe ratio (COM/Fe <0.33), adsorption of peptides/proteins onto ferric oxide-hydroxide particles, described as electrostatic patch model, enables the coagulation at pH 6-8. On the contrary, steric stabilization reduces coagulation at pH 6-8 if the ratio COM/Fe is high (COM/Fe >0.33). Coagulation of peptides and proteins is disturbed at pH 6-7 as a consequence of Fe-peptide/protein complexes formation. The maximum ability of peptides/proteins to form soluble complexes with Fe was found just at pH 6, when peptides/proteins bind 1.38 mmol Fe per 1 g of peptide/protein DOC. Complex forming peptides and proteins of relative molecular weights of 1, 2.8, 6, 8, 8.5, 10 and 52 kDa were isolated by affinity chromatography.  相似文献   

10.
Fabris R  Chow CW  Drikas M  Eikebrokk B 《Water research》2008,42(15):4188-4196
Observations from many countries around the world during the past 10-20 years indicate increasing natural organic matter (NOM) concentration levels in water sources, due to issues such as global warming, changes in soil acidification, increased drought severity and more intensive rain events. In addition to the trend towards increasing NOM concentration, the character of NOM can vary with source and time (season). The great seasonal variability and the trend towards elevated NOM concentration levels impose challenges to the water industry and the water treatment facilities in terms of operational optimisation and proper process control. The aim of this investigation was to compare selected raw and conventionally treated drinking water sources from different hemispheres with regard to NOM character which may lead to better understanding of the impact of source water on water treatment. Results from the analyses of selected Norwegian and Australian water samples showed that Norwegian NOM exhibited greater humic nature, indicating a stronger bias of allochthonous versus autochthonous organic origin. Similarly, Norwegian source waters had higher average molecular weights than Australian waters. Following coagulation treatment, the organic character of the recalcitrant NOM in both countries was similar. Differences in organic character of these source waters after treatment were found to be related to treatment practice rather than origin of the source water. The characterisation techniques employed also enabled identification of the coagulation processes which were not necessarily optimised for dissolved organic carbon (DOC) removal. The reactivity with chlorine as well as trihalomethane formation potential (THMFP) of the treated waters showed differences in behaviour between Norwegian and Australian sources that appeared to be related to residual higher molecular weight organic material. By evaluation of changes in specific molecular weight regions and disinfection parameters before and after treatment, correlations were found that relate treatment strategy to chlorine demand and DBP formation.  相似文献   

11.
Removal of natural organic matter (NOM) is well established using metal salt coagulants. In addition, flocculant aids are also commonly used to improve solid removal. The objectives of this paper is to describe the impacts of both NOM and polymer on floc structure. The study offers a comparison of floc physical characteristics for coagulant precipitate flocs, organic-coagulant flocs and organic-coagulant-polymer flocs for optimum coagulant and polymer doses. A ferric sulphate-based coagulant was used as the primary coagulant and the polymer selected was a high molecular weight (MW) cationic polydiallyldimethylammonium chloride (polyDADMAC). Floc size, breakage, re-growth and settling characteristics were measured. Precipitate flocs were larger than organic flocs and had better settling characteristics when compared to NOM-coagulant flocs. When polymer was added, floc size and compaction was seen to further reduce. An explanation was offered in terms of the mode of flocculation involved. Floc breakage behaviour showed that polymer reduced the rate of floc degradation but did not greatly improve floc re-growth potential after breakage, which was generally poor for all of the suspensions.  相似文献   

12.
Harif T  Khai M  Adin A 《Water research》2012,46(10):3177-3188
Electrocoagulation (EC) and chemical coagulation (CC) are employed in water treatment for particle removal. Although both are used for similar purposes, they differ in their dosing method - in EC the coagulant is added by electrolytic oxidation of an appropriate anode material, while in CC dissolution of a chemical coagulant is used. These different methods in fact induce different chemical environments, which should impact coagulation/flocculation mechanisms and subsequent floc formation. Hence, the process implications when choosing which to apply should be significant. This study elucidates differences in coagulation/flocculation mechanisms in EC versus CC and their subsequent effect on floc growth kinetics and structural evolution. A buffered kaolin suspension served as a representative solution that underwent EC and CC by applying aluminum via additive dosing regime in batch mode. In EC an aluminum anode generated the active species while in CC, commercial alum was used. Aluminum equivalent doses were applied, at initial pH values of 5, 6.5 and 8, while samples were taken over pre-determined time intervals, and analyzed for pH, particle size distribution, ζ potential, and structural properties. EC generated fragile flocs, compared to CC, over a wider pH range, at a substantially higher growth rate, that were prone to restructuring and compaction. The results suggest that the flocculation mechanism governing EC in sweep floc conditions is of Diffusion Limited Cluster Aggregation (DCLA) nature, versus a Reaction Limited Cluster Aggregation (RLCA) type in CC. The implications of these differences are discussed.  相似文献   

13.
Yan M  Wang D  Qu J  Ni J  Chow CW 《Water research》2008,42(8-9):2278-2286
Conventional coagulation is not an effective treatment option to remove natural organic matter (NOM) in water with high alkalinity/pH. For this type of water, enhanced coagulation is currently proposed as one of the available treatment options and is implemented by acidifying the raw water and applying increased doses of hydrolyzing coagulants. Both of these methods have some disadvantages such as increasing the corrosive tendency of water and increasing cost of treatment. In this paper, an improved version of enhanced coagulation through coagulant optimization to treat this kind of water is demonstrated. A novel coagulant, a composite polyaluminum chloride (HPAC), was developed with both the advantages of polyaluminum chloride (PACl) and the additive coagulant aids: PACl contains significant amounts of highly charged and stable polynuclear aluminum hydrolysis products, which is less affected by the pH of the raw water than traditional coagulants (alum and ferric salts); the additives can enhance both the charge neutralization and bridging abilities of PACl. HPAC exhibited 30% more efficiency than alum and ferric salts in dissolved organic carbon (DOC) removal and was very effective in turbidity removal. This result was confirmed by pilot-scale testing, where particles and organic matter were removed synergistically with HPAC as coagulant by sequential water treatment steps including pre-ozonation, coagulation, flotation and sand filtration.  相似文献   

14.
针对水源水藻类(优势藻为硅藻中的针杆藻)爆发问题,通过对比PAFS、PAC、PFC 3种混凝剂的除藻除浊效果,选取PAFS为最佳混凝剂;通过添加预氧化剂和助凝剂强化混凝除藻效果,结果表明使用助凝剂PDMDAAC对PAFS的助凝效果最好,其余药剂结合PAFS的除藻效果为PPC>ClO2>PAM>H2O2>HCA-1。用Box-Behnken Design(BBD)实验原理设计实验,研究pH值、搅拌速度、搅拌时间3因素对PAFS+PDMDAAC除藻效果的影响及最优除藻条件。结果表明:3因素对除藻的影响显著,且其显著程度为pH值>搅拌速度>搅拌时间,而3因素的交互影响对除藻的影响不太显著;强化混凝的最优条件为pH值为7.5、搅拌速度为75 r/min、搅拌时间为15 min,其除藻率为98.75%。  相似文献   

15.
Tanneru CT  Chellam S 《Water research》2012,46(7):2111-2120
Results from a laboratory-scale study evaluating virus control by a hybrid iron electrocoagulation - microfiltration process revealed only 1.0-1.5 log MS2 bacteriophage reduction even at relatively high iron dosages (∼13 mg/L as Fe) for natural surface water containing moderate natural organic matter (NOM) concentrations (4.5 mg/L dissolved organic carbon, DOC). In contrast, much greater reductions were measured (6.5-log at pH 6.4 and 4-log at pH 7.5) at similar iron dosages for synthetic water that was devoid of NOM. Quantitative agreement with Faraday’s law with 2-electron transfer and speciation with phenanthroline demonstrated electrochemical generation of soluble ferrous iron. Near quantitative extraction of viruses by dissolving flocs formed in synthetic water provided direct evidence of their removal by sorption and enmeshment onto iron hydroxide flocs. In contrast, only approximately 1% of the viruses were associated with the flocs formed in natural water consistent with the measured poor removals. 1-2 logs of virus inactivation were also observed in the electrochemical cell for synthetic water (no NOM) but not for surface water (4.5 mg/L DOC). Sweep flocculation was the dominant destabilization mechanism since the ζ potential did not reach zero even when 6-log virus reductions were achieved. Charge neutralization only played a secondary role since ζ potential → 0 with increasing iron electrocoagulant dosage. Importantly, virus removal from synthetic water decreased when Suwanee River Humic Acid was added. Therefore, NOM present in natural waters appears to reduce the effectiveness of iron electrocoagulation pretreatment to microfiltration for virus control by complexing ferrous ions. This inhibits (i) Fe2+ oxidation, precipitation, and virus destabilization and (ii) virus inactivation through reactive oxygen species intermediates or by direct interactions with Fe2+ ions.  相似文献   

16.
Hoon Hyung 《Water research》2009,43(9):2463-178
The first objective of this study is to examine the fate of C60 under two disposal scenarios through which pristine C60 is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC60 in water containing NOM was also developed. When pristine C60 was added to water either in the form of dry C60 or in organic solvent, it formed water stable aggregates with characteristics similar to nC60 prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC60 in water treatment processes, which are the first line of defense against ingestion from potable water - a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C60 were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C60 could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C60.  相似文献   

17.
Boyer TH  Singer PC 《Water research》2005,39(7):1265-1276
The objective of this research was to compare enhanced coagulation with anion exchange for removal of disinfection by-product (DBP) precursors (i.e. natural organic matter (NOM) and bromide). Treatment with a magnetic ion exchange resin (MIEX((R))) was the primary focus of this study. Raw waters from four utilities in California were evaluated. The waters had low turbidity, low to moderate organic carbon concentrations, a wide range of alkalinities, and moderate to high bromide ion concentrations. The treated waters were compared based on removal of ultraviolet (UV) absorbance, dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP). The results indicated that treatment with MIEX is more effective than coagulation at removing UV-absorbing substances and DOC. Treatment with MIEX and treatment with MIEX followed by coagulation yielded similar results, suggesting that coagulation of MIEX-treated water does not provide additional removal of organic carbon. MIEX treatment reduced the THMFP and HAAFP in all waters, and did so to a greater extent than coagulation. Treatment with MIEX was most effective in raw waters having a high specific UV absorbance and a low anionic strength. Following MIEX treatment, subsequent chlorination resulted in a shift to the more brominated THM and HAA species as compared to chlorination of the raw water. MIEX also removed bromide to varying degrees, depending on the raw water alkalinity and initial bromide ion concentration.  相似文献   

18.
Magnetic ion-exchange resin treatment: impact of water type and resin use   总被引:7,自引:0,他引:7  
Three raw waters of fundamentally different natural organic matter (NOM) character were treated by magnetic resin using a bench-scale method designed to mimic how the resin is used in continuous operation. Increasing water hydrophobicity resulted in reduced dissolved organic carbon (DOC) removal with removal of 56%, 33% and 25% for waters containing 21%, 50% and 75% hydrophobic NOM, respectively. Study of consecutive resin uses showed that the NOM in the hydrophobic water had high affinity for the resin shown by DOC removal of 65% after the first use of the resin. This dropped to 25% DOC removal after 15 consecutive resin uses. For the more hydrophilic waters, NOM removal remained consistent after each resin use. The hydrophobic sample contained higher MW NOM that was capable of blocking resin sites that prevented continual adsorption of organics on to the resin. The hydrophilic NOM containing a large proportion of hydrophilic acids was consistently removed to around 60%. The water containing algogenic-derived NOM was poorly removed by magnetic resin. Subsequent coagulation showed higher removal with increasing hydrophobicity.  相似文献   

19.
Removal of THM precursors by coagulation or ion exchange   总被引:3,自引:0,他引:3  
Bolto B  Dixon D  Eldridge R  King S 《Water research》2002,36(20):331-5073
The removal of natural organic matter (NOM) from drinking water supplies can be achieved by different processes, among them coagulation and adsorption. Synthetic waters made from concentrates of humic substances from reservoir and river waters were tested in the laboratory for ease of removal of NOM by coagulation with cationic organic polymers and with alum, and by adsorption on anion exchangers. For polymers such as high molecular weight polydiallyldimethylammonium chloride (polyDADMAC) and cationic polyacrylamides of high charge, performance was nearly as effective as alum, with colour removals 86–100% of those obtained for alum. Ion exchange using the best commercially available resins designed for this purpose, a gel polystyrene and a macroporous acrylic resin, was more effective than alum treatment for two of the natural waters studied, but inferior for a third. The resins were overall superior to cationic polymers.

The NOM was separated into four fractions based on hydrophobic and hydrophilic properties. Alum was not as effective as ion exchange for the elimination of individual ionic NOM fractions. It was better than cationic polymers for removal of humic and fulvic acids, although polyDADMAC was as good for one water. For the removal of charged compounds alum then polyDADMAC were the best performers for that water. Unequivocal evidence was obtained that coagulants remove material that is not adsorbed by resins, and vice versa. A combination of coagulation with a cationic polymer and adsorption by an anion exchanger removed essentially all of the NOM. The preference of the coagulants was for the larger, more hydrophobic molecules, and of resins for smaller highly charged hydrophilic molecules. Each fraction had trihalomethane formation potentials in the range 11–24 μg/mg, except for one water that was more reactive. Hence, the actual amount of each fraction in the original water becomes a crucial factor.  相似文献   


20.
Organic polyelectrolytes in water treatment   总被引:4,自引:0,他引:4  
Bolto B  Gregory J 《Water research》2007,41(11):2301-2324
The use of polymers in the production of drinking water is reviewed, with emphasis on the nature of the impurities to be removed, the mechanisms of coagulation and flocculation, and the types of polymers commonly available. There is a focus on polymers for primary coagulation, their use as coagulant aids, in the recycling of filter backwash waters, and in sludge thickening. Practicalities of polymer use are discussed, with particular attention to polymer toxicity, and the presence of residual polymer in the final drinking water. The questions of polymer degradation and the formation of disinfection by-products are also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号