首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
研究了热退火条件下Au/Ti/Ni-4H-SiC欧姆接触形成机制.通过950 ℃下的快速热退火形成的最低欧姆接触电阻为2.765×10-6 Ω·cm2.SIMS分析表明退火过程中NiSi化合物的形成会带来SiC内部多余C原子的溢出,并在接触面上与Ti形成间隙化合物TiC.这一过程造成接触表面存在由大量C空位形成的缺陷层从而增强了表面间接隧穿.通过界面能带结构图直观地解释了欧姆接触在热退火条件下的形成机制.  相似文献   

2.
介绍了n -SiC/Ti/Pt欧姆接触的制备方法及其接触特性,其中n -SiC外延层是通过化学气相淀积的方法在偏离(0001)方向7.86.的4H-SiC衬底上进行同质外延生长所得.对于n -SiC/Ti/Pt接触系统,通过合金实验得到最优的欧姆接触制备条件,得到最小的比接触电阻为2.59×10-6 Ω·cm2,满足器件性能,为各种SiC器件的实现奠定了基础.同时,该接触系统还具有很好的高温稳定性,在100 h的400℃高温存储实验后,其比接触电阻基本稳定.  相似文献   

3.
研究了Ni/Pt和Ti/Pt金属在n型4H-SiC上的欧姆接触。在1 020℃退火后,Ni/Pt与n型4H-SiC欧姆接触的比接触电阻为2.2×10-6Ω·cm2。Ti/Pt与n型4H-SiC欧姆接触的比接触电阻为5.4×10-6Ω·cm2,退火温度为1 050℃。虽然Ni的功函数比Ti的功函数高,但是Ni比Ti更容易与n型4H-SiC形成欧姆接触。使用能谱分析仪(EDX)分析了Ni/Pt和Ti/Pt金属与4HSiC接触面的元素,观察到C原子相对于Pt原子的原子数分数随退火温度的变化而不同。实验验证了在n型4H-SiC中退火导致的碳空位起施主作用是有利于欧姆接触形成的主要原因。  相似文献   

4.
多层金属-n型4H-SiC的欧姆接触   总被引:1,自引:0,他引:1  
研究了热退火条件下Au/Ti/Ni-4H-SiC欧姆接触形成机制.通过950 ℃下的快速热退火形成的最低欧姆接触电阻为2.765×10-6 Ω·cm2.SIMS分析表明退火过程中NiSi化合物的形成会带来SiC内部多余C原子的溢出,并在接触面上与Ti形成间隙化合物TiC.这一过程造成接触表面存在由大量C空位形成的缺陷层从而增强了表面间接隧穿.通过界面能带结构图直观地解释了欧姆接触在热退火条件下的形成机制.  相似文献   

5.
对4H-SiC雪崩光电探测器的Ti/Al/Au p型欧姆接触进行了详细的研究。通过线性传输线模型(LTLM)测得经930℃退火后欧姆接触的最小比接触电阻为5.4×10~(-4)Ωcm~2。分别用扫描电子显微镜(SEM)、俄歇电子能谱(AES)、X射线光电子能谱(XPS)和X射线衍射谱(XRD)对退火前后的表面形貌、金属之间以及金-半接触界面之间相互反应及扩散情况进行测试与分析,发现了影响欧姆接触性能的主要原冈。对采用此欧姆接触制备的4H-SiC雪崩光电探测器进行测试,发现器件的击穿电压约为-55 V,此时其p型电极处的电压降仅为0.82 mV,可以满足4H-SiC雪崩光电探测器在高压下工作的需要。  相似文献   

6.
研究了Co/4H-SiC结构的电学特性。通过直流溅射的方式在金属Co 薄膜 与SiC之间淀积了一层碳薄膜,极大地改善了欧姆特性。采用两步快速退火工艺,即500 °C 退火 10 分钟 再 1050 °C 退火 3 分钟,形成了良好的欧姆接触,接触电阻率为2.30×10-6 Ω.cm2。X射线衍射(XRD)分析表明高温退火后Co基金属接触层中的硅化物更加稳定,接触层下形成的富碳层有效地降低了电子输运的势垒高度,对欧姆接触的形成起了关键作用。通过对Au/Co/C/SiC 欧姆接触的热稳定性测试,结果表明经过500oC下20小时的热测试,掺杂浓度为2.8×1018 cm-3的 n型4H-SiC保持了良好的欧姆特性。  相似文献   

7.
利用电子回旋共振(ECR)氢等离子体处理n型4H-SiC(0.5~1.5×1019cm-3)表面,采用溅射法制备碳化钛(TiC)电极,并在低温(<800℃)条件下退火。直线传输线模型(TLM)测试结果表明,TiC电极无需退火即可与SiC形成欧姆接触,采用ECR氢等离子体处理能明显降低比接触电阻,并在600℃退火时获得了最小的比接触电阻2.45×10-6Ω.cm2;当退火温度超过600℃时,欧姆接触性能开始退化,但是比接触电阻仍然低于未经氢等离子体处理的样品,说明ECR氢等离子体处理对防止高温欧姆接触性能劣化仍有明显的效果。利用X射线衍射(XRD)分析了不同退火温度下TiC/SiC界面的物相组成,揭示了电学特性与微观结构的关系。  相似文献   

8.
以Ti/Al/Ni/Au作为欧姆接触金属体系,通过电感耦合等离子体(ICP)刻蚀的预处理,在氢化物气相外延法生长的单晶氮化镓(GaN)材料的N面实现了良好的欧姆接触,其比接触电阻率为3.7×10-4 Ω·cm2.通过扫描电子显微镜、原子力显微镜、阴极荧光和光致发光谱对GaN N面的表面、光学特性进行了对比表征.结果表明:未刻蚀GaN衬底的N面表面存在一定的损伤层,导致近表面处含有大量缺陷,不利于欧姆接触的形成;而ICP刻蚀处理有效地去除了损伤层.X射线光电子能谱(XPS)分析显示刻蚀后样品的Ga 3d结合能比未刻蚀样品向高能方向移动了约0.3 eV,其肖特基势垒则相应降低,有利于欧姆接触的形成.同时对Fe掺杂半绝缘GaN的N面也进行了刻蚀处理,同样实现了良好的Ti/Al/Ni/Au欧姆接触,其比接触电阻率为0.12 Ω·cm2.  相似文献   

9.
从理论和实验的角度研究了n型4H-SiC上的多晶硅欧姆接触.在P型4H-SiC外延层上使用P+离子注入来形成TLM结构的n阱.使用LPCVD淀积多晶硅并通过P+离子注入及扩散进行掺杂,得到的多晶硅方块电阻为22Ω/□.得到的n+多晶硅/n-SiC欧姆接触的比接触电阻为3.82×10-5Ω·cm2,接触下的注入层的方块电阻为4.9kΩ/□.对n+多晶硅/n-SiC欧姆接触形成的机理进行了讨论.  相似文献   

10.
利用金属有机化合物化学气相淀积(MOCVD)在SiC衬底上外延生长了N-polar GaN材料,采用传输线模型(TLM)分析了Ti/Al/Ni/Au金属体系在N-polar GaN上的欧姆接触特性.结果表明,Ti/Al/Ni/Au (20/60/10/50 nm)在N-polar GaN上可形成比接触电阻率为2.2×10-3Ω·cm2的非合金欧姆接触,当退火温度升至200℃,比接触电阻率降为1.44×10-3 Ω·cm2,随着退火温度的进一步上升,Ga原子外逸导致欧姆接触退化为肖特基接触.  相似文献   

11.
Fabrication procedures for silicon carbide power metal oxide semiconductor field effect transistors (MOSFETs) can be improved through simultaneous formation (i.e., same contact materials and one step annealing) of ohmic contacts on both the p-well and n-source regions. We have succeeded with the simultaneous formation of the ohmic contacts for p- and n-type SiC semiconductors by examining ternary Ni/Ti/Al materials with various compositions, where a slash symbol “/” indicates the deposition sequence starting with Ni. The Ni(20 nm)/Ti(50 nm)/Al(50 nm) combination provided specific contact resistances of 2 × 10−3 Ω-cm2 and 2 × 10−4 Ω-cm2 for p- and n-type SiC, respectively, after annealing at 800°C for 30 min, where the doping level of Al in the SiC substrate was 4.5 × 1018 cm−3 and the level of N was 1.0 × 1019 cm−3.  相似文献   

12.
This paper presents the structural, chemical and electronic properties of Al/Ni/ Al-layers evaporated on 4H silicon carbide and then annealed at 1000°C for 5 min. The structure was investigated before and after annealing by transmission electron spectroscopy from cross-sectional specimens. With x-ray photoelectron spectroscopy, both element distribution and bonding energies were followed during sputtering through the alloyed metal-semiconductor contact. Voids are found in both annealed Ni/4H-SiC and Al/Ni/Al/4H-SiC contact layers, though closer to the metal-semiconductor interface in the former case. The first aluminum-layer is believed to prevent voids to be formed at the interface and also to reduce the oxide on the semiconductor surface. The contact was found to be ohmic with a specific contact resistance ρc - 1.8 × 10−5 Ωcm2 which is more than three times lower ρc than for the ordinary Ni/4H-SiC contact prepared in the same way.  相似文献   

13.
Results are reported for ohmic contacts formed on n-type 4H and 6H-SiC using nichrome (80/20 weight percent Ni/Cr). The electrical characteristics of these NiCr contacts are similar to those of contacts formed on 6H-SiC using pure Ni (∼1×10−5Ω-cm2 for moderately doped material), but the contacts exhibit significant improvement with regard to physical stability. Composite Au/NiCr contacts exhibit good stability during long-term anneals (∼2500 h) at 300°C without the requirement of a diffusion barrier layer between the NiCr ohmic contact layer and the Au cap layer. In addition, the use of NiCr results in success rates near 100% for direct wire bonding to the Au cap layers. Characterization of the contacts by Auger electron spectroscopy, Rutherford backscattering spectroscopy, and transmission electron microscopy provides an explanation for the observed behavior.  相似文献   

14.
Ti/WSi/Ni contact to n-type SiCN was investigated using the circular transmission line method. Current–voltage characteristics, X-ray diffraction and X-ray photoelectron spectroscopy were used to characterize the contacts before and after annealing. It is shown that the conducting behavior of the contacts is dependent on the annealing temperature. After annealing at 900 ℃ or above, ohmic contacts with specific contact resistivity were achieved. The 1000-℃-annealed contact exhibits the lowest specific contact of 3.07E-5 Ω? cm2. The formation of ohmic contact with low specific contact resistivity was discussed.  相似文献   

15.
Cheng Wenjuan  Qian Yanni  Ma Xueming 《半导体学报》2010,31(4):043003-043003-3
Ti/WSi/Ni contact to n-type SiCN was investigated using the circular transmission line method. Current-voltage characteristics, X-ray diffraction and X-ray photoelectron spectroscopy were used to characterize the contacts before and after annealing. It is shown that the conducting behavior of the contacts is dependent on the annealing temperature. After annealing at 900 ℃ or above, ohmic contacts with specific contact resistivity were achieved. The 1000-℃-annealed contact exhibits the lowest specific contact of 3.07 ×10-5 Ω·cm2. The formation of ohmic contact with low specific contact resistivity was discussed.  相似文献   

16.
Interfacial reactions, surface morphology, and current-voltage (I-V) characteristics of Ti/Al/4H-SiC and TiN/Al/4H-SiC were studied before and after high-temperature annealing. It was observed that surface smoothness of the samples was not significantly affected by the heat treatment at up to 900°C, in contrast to the case of Al/SiC. Transmission electron microscopy (TEM) observation of the Ti(TiN)/Al/SiC interface showed that Al layer reacted with the SiC substrate at 900°C and formed an Al-Si-(Ti)-C compound at the metal/SiC interface, which is similar to the case of the Al/SiC interface. The I-V measurement showed reasonable ohmic properties for the Ti/Al films, indicating that the films can be used to stabilize the Al/SiC contact by protecting the Al layer from the potential oxidation and evaporation problem, while maintaining proper contact properties.  相似文献   

17.
Ohmic contacts consisting of Ti and Ti/Sb were prepared on silicon and carbon face of 6H-SiC with different doping densities. Ni contacts were used as reference. All structures were gradually annealed at different temperatures. Specific contact resistance was measured and morphology was monitored after each annealing. It was found that the same metallization has different properties on different 6H-SiC polar faces. Sb addition to Ti contact helped to reach lower values of specific contact resistance on Si-faces of substrates. On C-faces of substrates, pure titanium contacts were comparable or better than Ti/Sb. Annealing at 960 °C and 1065 °C caused contact morphology deterioration and surface spreading of Ti and Ti/Sb contacts. Ni contacts kept good morphology at all annealing temperatures and had the best values of specific contact resistance after annealing at 960 °C and 1065 °C. Using XPS profiling only small amount of free carbon was found in Ti-based contacts.  相似文献   

18.
A set of Ti/Ni metallizations with different thickness of the underlying titanium layer was prepared on 6H-SiC together with structures that contained only pure Ti and Ni. Samples were gradually annealed at 750-1150 °C. Structures Ti(2)/Ni(50) and Ti(100)/Ni(50) showed the lowest contact resistivity, 2 × 10−4 Ω cm2 in both cases. For the Ti(2)/Ni(50) structure, low contact resistivity was reached most likely due to reduction of surface oxides on SiC by the thin titanium layer. In the Ti(100)/Ni(50) structure, the titanium layer prevents diffusion of nickel towards SiC and there is a layer containing mainly TiC at the interface with silicon carbide.  相似文献   

19.
Carbon structural transitions and ohmic contacts on 4H-SiC   总被引:4,自引:0,他引:4  
The structural properties of sputtered carbon films on SiC are investigated using X-ray photoelectron spectroscopy (XPS) and Raman scattering. The as-deposited films are amorphous with an sp2/sp3 ratio of 1. The sp2 carbon structures gradually increase with increasing temperatures and consist of amorphous aromatic-like carbon, polyene-like carbon, and nano-size graphite flakes. Schottky contacts on carbon/SiC are converted to ohmic contacts after annealing. The concentration of nano-graphitic flakes relative to the aromatic-like and polyene-like carbon increases nearly linearly with annealing temperature. Stacked graphitic structures are not observed. The specific contact resistivities are at 10−3–10−4Ωcm2 on the carbon/SiC after annealing from 1050°C to 1350°C.  相似文献   

20.
The Ti/Al/Ni/Au metals were deposited on undoped AlN films by electron beam evaporation. The influence of annealing temperature on the properties of contacts was investigated. When the annealing temperatures were between 800 and 950℃, the AlN-Ti/Al/Ni/Au contacts became ohmic contacts and the resistance decreased with the increase of annealing temperature. A lowest specific contacts resistance of 0.379 Ω·cm2 was obtained for the sample annealed at 950℃. In this work, we confirmed that the formation mechanism of ohmic contacts on AlN was due to the formation of Al-Au, Au-Ti and Al-Ni alloys, and reduction of the specific contacts resistance could originate from the formation of Au2Ti and AlAu2 alloys. This result provided a possibility for the preparation of AlN-based high-frequency, high-power devices and deep ultraviolet devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号