首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, V2O4-PEPC based pressure sensor was designed and fabricated by drop-casting the blend of V2O4-PEPC microcomposite thin films of vanadium oxide (V2O4) micropowder (10 wt.%) and poly-N-epoxypropylcarbazole, PEPC (2 wt.%) in benzol (1 ml) on steel substrates. The thickness of the V2O4-PEPC films was in the range of 20-40 μm. The DC resistance of the sensor was decreased in average by 24 times as the pressure was increased up to 11.7 kNm−2. The resistance-pressure relationships were simulated.  相似文献   

2.
A metal–insulator transition (MIT) occurring in vanadium oxide films prepared in different ways has been widely studied in many laboratories. It consists of a resistive change of various orders of magnitude taking place while traversing a temperature close to 67 °C. In this work the properties of VOx films synthesized by thermal treatment of vanadium films which were vacuum-evaporated on an oxidized silicon substrate are shown. Such thermal oxidizing treatment was performed under atmospheric air at different temperatures during distinct times. Ellipsometry measurements allowed determining the thickness and optical constants of the layers after the oxidation process. From XRD, Raman and FTIR measurements, several phases with distinct oxygen content, V2O3, V3O5, VO2 and V2O5, were found in the films, depending on the oxidation time and temperature. Current–temperature measurements across the films were carried out by using sandwich-type metal–insulator–metal structures. Unlike former studies on similar structures, no MIT was observed from these measurements. On the other hand, from room-temperature current–voltage measurements a well defined memristive behavior was found as a regular result in most of our structures. This memristive behavior is ascribed to the complex defect structure in the films, including the variable amount of oxygen vacancies in the lattice, rather than to the above-mentioned metal–insulator transition in vanadium oxide.  相似文献   

3.
二氧化钒薄膜的退火组分变化及光学特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
田雪松  刘金成  掌蕴东  鲁建业  王骐 《激光技术》2005,29(3):332-333,336
为得到高纯度的VO2薄膜,对其制备参数进行了探索。VO2薄膜用磁控溅射法制备。对不同条件下制备的VO2薄膜用X射线电子能谱仪(XPS)测试,并通过拟合来得到3,4,5价钒在薄膜中所占的比例。为提高4价钒的含量对薄膜进行了退火处理,分析了退火对氧化钒薄膜中4价钒含量的影响。结果表明,VO2薄膜对10.6μm激光的透过率从60℃时的74%变到78℃时的11.93%,发生了相变。  相似文献   

4.
Distinct properties of multiple phases of vanadium oxide (VOx) render this material family attractive for advanced electronic devices, catalysis, and energy storage. In this work, phase boundaries of VOx are crossed and distinct electronic properties are obtained by electrochemically tuning the oxygen content of VOx thin films under a wide range of temperatures. Reversible phase transitions between two adjacent VOx phases, VO2 and V2O5, are obtained. Cathodic biases trigger the phase transition from V2O5 to VO2, accompanied by disappearance of the wide band gap. The transformed phase is stable upon removal of the bias while reversible upon reversal of the electrochemical bias. The kinetics of the phase transition is monitored by tracking the time‐dependent response of the X‐ray absorption peaks upon the application of a sinusoidal electrical bias. The electrochemically controllable phase transition between VO2 and V2O5 demonstrates the ability to induce major changes in the electronic properties of VOx by spanning multiple structural phases. This concept is transferable to other multiphase oxides for electronic, magnetic, or electrochemical applications.  相似文献   

5.
The influences of N2 introduction to a sputtering gas on structural and optical properties of vanadium-doped ZnO (VZO) films, grown by using reactive RF magnetron sputtering on a quartz substrate at room temperature, were investigated. In the VZO films, V doping caused to form a large number of O vacancies (VO) and degraded both the c-axis orientation and optical transmittance. While, on the contrary, the ZnO(002) diffraction intensity of 3.5-at.% VZO films increased adding N2 with a partial pressure ratio (αN2) >2% reaching a maximum at αN2 =5%. The average optical transmittance (wavelengths: 450−800 nm) of the 3.5-at.% VZO films was also improved by the N2 introduction and reached 74% at αN2 =5%. As a result of the analyses of the chemical binding states of the incorporated N atoms via the Raman spectroscopy and XPS, it was confirmed that the O sites were substituted by the N atoms and the amount of incorporated N increased by the high V doping. From the above, the N2 introduction was effective to suppress the VO formation even in room-temperature-grown VZO films, so it enables to improve both the c-axis orientation and optical transmittance.  相似文献   

6.
A novel lyotropic liquid‐crystal (LC) based assembly strategy is developed for the first time, to fabricate composite films of vanadium pentoxide (V2O5) nanobelts and graphene oxide (GO) sheets, with highly oriented layered structures. It is found that similar lamellar LC phases can be simply established by V2O5 nanobelts alone or by a mixture of V2O5 nanobelts and GO nanosheets in their aqueous dispersions. More importantly, the LC phases can be retained with any proportion of V2O5 nanobelts and GO, which allows facile optimization of the ratio of each component in the resulting films. Named VrGO, composite films manifest high electrical conductivity, good mechanical stability, and excellent flexibility, which allow them to be utilized as high performance electrodes in flexible energy storage devices. As demonstrated in this work, the VrGO films containing 67 wt% V2O5 exhibit excellent capacitance of 166 F g?1 at 10 A g?1; superior to those of the previously reported composites of V2O5 and nanocarbon. Moreover, the VrGO film in flexible lithium ion batteries delivers a high capacity of 215 mAh g?1 at 0.1 A g?1; comparable to the best V2O5 based cathode materials.  相似文献   

7.
A study of the growth parameters governing the nucleation of metastable superconducting A15 V3Si on Si and A12O3 is presented. Nominally, 500Å films of V1-xSix were produced through codeposition of V and Si onto heated (111) Si and (1102) A12O3 substrates. Samples were prepared in a custom-built ultrahigh vacuum (UHV) chamber containing dual e-beam evaporation sources and a high temperature substrate heater. V and Si fluxes were adjusted to result in the desired average film composition. V0.75Si0.25 films prepared at temperatures in excess of 550° C on Si show significant reaction with the substrate and are nonsuperconducting while similar films grown on A12O3 exhibit superconducting transition temperatures(@#@ Tc @#@) approaching bulk values for V3Si (16.6-17.1 K). Codeposition at temperatures between 350 and 550° C results in superconducting films on Si substrates while growth at lower temperatures results in nonsuperconducting films. Lowering the growth temperature to 400° C has been shown throughex situ transmission electron microscopy (TEM) and Auger compositional profiling to minimize the reaction with the Si substrate while still activating the surface migration processes needed to nucleate A15 V3Si. Variation of film composition aboutx = 0.25 is shown to result in nonsuperconducting films for highx and superconducting films with Tc approaching the bulk V value (5.4 K) for lowx. Finally, lowering the V0.75Si0.25 deposition rate is shown to raise Tc.  相似文献   

8.
《Microelectronic Engineering》2007,84(5-8):716-720
Amorphous (Al2O3)x–(TiO2)1−x composite films are prepared using r.f. unbalanced magnetron sputtering in an atmosphere of argon and oxygen at room temperature. The optical constants of (Al2O3)x–(TiO2)1−x composite films are linearly dependent on the Al2O3 mole fraction in the Al2O3–TiO2 composite film. The optical constants of these Al2O3–TiO2 composite films can be made to meet the optical requirements for a high transmittance attenuated phase shift mask (HT-APSM) blank by tuning the Al2O3 mole fraction. The Al2O3 mole fraction range that would allow the films to meet the optical requirements of an HT-APSM blank for ArF immersion lithography is calculated to be between 76% and 84%. One π-phase-shifted Al2O3–TiO2 composite thin film to be used as an HT-APSM blank for ArF immersion lithography is fabricated and is shown to satisfy the optical requirements.  相似文献   

9.
Carbon‐encapsulated Li3VO4 is synthesized by a facile environmentally benign solid‐state method with organic metallic precursor VO(C5H7O2)2 being chosen as both V and carbon sources yielding a core–shell nanostructure with lithium introduced in the subsequent annealing process. The Li3VO4 encapsulated with carbon presents exceeding rate capability (a reversible capability of 450, 340, 169, and 106 mAh g?1 at 0.1 C, 10 C, 50 C, and 80 C, respectively) and long cyclic performance (80% capacity retention after 2000 cycles at 10 C) as an anode in lithium‐ion batteries. The superior performance is derived from the structural features of the carbon‐encapsulated Li3VO4 composite with oxygen vacancies in Li3VO4, which increase surface energy and could possibly serve as a nucleation center, thus facilitating phase transitions. The in situ generated carbon shell not only facilitates electron transport, but also suppresses Li3VO4 particle growth during the calcination process. The encouraging results demonstrate the significant potential of carbon encapsulated Li3VO4 for high power batteries. In addition, the simple generic synthesis method is applicable to the fabrication of a variety of electrode materials for batteries and supercapacitors with unique core–shell structure with mesoporous carbon shell.  相似文献   

10.
We report the synthesis of V2O5 nanorods by utilizing simple wet chemical strategy with ammonia meta vanadate (NH4VO3) and polyethylene glycol (PEG) exploited as precursor and surfactant agent, respectively. The effect of post-annealing on structural, optical and electrical properties of V2O5 nanorods was characterized by XRD, HRSEM-EDX, TEM, FT-IR, UV (DRS), PL, TG–DTA and DC conductivity studies. The X-ray diffraction analysis revealed that the prepared sample annealed at 150 °C for 5 h which exhibited anorthic phase of V5O9 and annealed at 300–600 °C showed the anorthic phase change to orthorhombic phase of V2O5 due to the post-annealing effect. The surface morphology results indicated that increasing temperature caused a change from microrods to a nanorods shape in the morphology of V2O5. FT-IR spectrum confirmed that the presence of V2O5 functional groups and the formation of V–O bond. The optical band gap was found in the range 2.5–2.48 eV and observed to decreases with various annealed temperature. The DC electrical conductivity was studied as a function of temperature which indicated the semiconducting nature. Further, the potential of V2O5 nanostructures were grown on the p-Si substrate using the nebulizer spray technique. The junction properties of the V2O5/p-Si diode were evaluated by measuring current (I)–voltage (V) and AC characteristics.  相似文献   

11.
The effects of growth temperature and annealing on the physical properties of Zn3Sn2O7 thin films were investigated in this work. The Zn3Sn2O7 thin films were deposited on glass substrates by radio frequency (rf) magnetron sputtering. It is found that the films are amorphous regardless of the growth temperature. The film grown at room temperature shows the highest mobility of 8.1 cm2 V?1 s?1 and the lowest carrier concentration of 2.0 × 1015 cm?3. The highest carrier concentration of 1.6 × 1019 cm?3 is obtained at the growth temperature of 250°C. Annealing treatment of the Zn3Sn2O7 thin films resulted in increases of carrier concentration and mobility. The average transmittance of the as-deposited and annealed films reaches 80%. By using a Zn3Sn2O7 thin film as the channel and a Ta2O5 thin film as the insulating layer, we fabricated transparent Zn3Sn2O7 thin-film transistors with field-effect mobility of 21.2 cm2 V?1 s?1, on/off current ratio of 105, threshold voltage of 0.8 V, and subthreshold swing of 0.8 V/decade.  相似文献   

12.
Thin films of vanadium cerium mixed oxides are good counter-electrodes for electrochromic devices because of their passive optical behavior and very good charge capacity. We deposited thin films of V–Ce mixed oxides on glass substrates by RF magnetron sputtering under argon at room temperature using different power settings. The targets were pressed into pellets of a powder mixture of V2O5 and CeO2 at molar ratios of 2:1, 1:1, and 1:2. For a molar ratio of 2:1, the resulting crystalline film comprised an orthorhombic CeVO3 phase and the average grain size was 89 nm. For molar ratios of 1:1 and 1:2, the resulting films were completely amorphous in nature. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy data confirmed these results. The optical properties of the films were studied using UV-Vis-NIR spectrophotometry. The transmittance and indirect allowed bandgap for the films increased with the RF power, corresponding to a blue shift of the UV cutoff. The average transmittance increased from 60.9% to 85.3% as the amount of CeO2 in the target material increased. The optical bandgap also increased from 1.94 to 2.34 eV with increasing CeO2 content for films prepared at 200 W. Photoacoustic amplitude (PA) spectra were recorded in the range 300–1000 nm. The optical bandgap was calculated from wavelength-dependent normalized PA data and values were in good agreement with those obtained from UV-Vis-NIR data. The thermal diffusivity calculated for the films increased with deposition power. For thin films deposited at 200 W, values of 53.556×10−8, 1.069×10−8, and 0.2198×10−8 m2/s were obtained for 2:1, 1:1, and 1:2 V2O5/CeO2, respectively.  相似文献   

13.
Vanadium dioxide (VO2) is a much‐discussed material for oxide electronics and neuromorphic computing applications. Here, heteroepitaxy of VO2 is realized on top of oxide nanosheets that cover either the amorphous silicon dioxide surfaces of Si substrates or X‐ray transparent silicon nitride membranes. The out‐of‐plane orientation of the VO2 thin films is controlled at will between (011)M1/(110)R and (?402)M1/(002)R by coating the bulk substrates with Ti0.87O2 and NbWO6 nanosheets, respectively, prior to VO2 growth. Temperature‐dependent X‐ray diffraction and automated crystal orientation mapping in microprobe transmission electron microscope mode (ACOM‐TEM) characterize the high phase purity, the crystallographic and orientational properties of the VO2 films. Transport measurements and soft X‐ray absorption in transmission are used to probe the VO2 metal–insulator transition, showing results of a quality equal to those from epitaxial films on bulk single‐crystal substrates. Successful local manipulation of two different VO2 orientations on a single substrate is demonstrated using VO2 grown on lithographically patterned lines of Ti0.87O2 and NbWO6 nanosheets investigated by electron backscatter diffraction. Finally, the excellent suitability of these nanosheet‐templated VO2 films for advanced lensless imaging of the metal–insulator transition using coherent soft X‐rays is discussed.  相似文献   

14.
The influences of O2 gas addition in argon plasma on reactive RF magnetron sputtering deposition of vanadium-doped ZnO (VZO) films were examined. ZnO or VZO films with vanadium concentration of 2 at% were deposited on a quartz substrate. Vanadium doping caused oxygen deficiency in ZnO and formed a large number of zinc interstitials (Zni), oxygen vacancies (VO), and zinc vacancies (VZn). Carrier density of VZO decreased from 9×1020 to 9×1018 cm−3 between O2 partial pressure ratio (αO2) of 0.6% and 1.0% in spite of the increase in valence number of vanadium. This result suggests that Zni is the dominant donor in VZO since Zni is a shallow-level defect. Average optical transmittance (Tv) at wavelength between 450 and 800 nm of VZO was 61% while that of ZnO was 82% without oxygen addition. Although the optical transmittance of VZO was largely deteriorated by optical absorption of VO, Tv of VZO improved by oxygen addition and reached 85% at αO2 of 1.0% via suppression of VO formation.  相似文献   

15.
A resistive-type relative humidity (RH) sensor based on vanadium complex (VO2(3-f[)) film is reported in this study. Gold electrodes were deposited on the glass substrates in a co-planar structure. A thin film of vanadium complex was coated as a humidity-sensing material on the top of the pre-patterned electrodes. The humidity-sensing principle of the sensor was based on the conductivity change of coated sensing element upon adsorption/desorption of water vapor. The resistance of the humidity sensor measured at 1 kHz decreased linearly with increasing the humidity in the range of 35%-70% RH. The overall resistance of the sensor decreases 11 times. An equivalent circuit for the VO2(3-fl) based resistive-type humidity sensor was developed. The properties of the sensor studied in this work make it beneficial for use in the instruments for environmental monitoring of humidity.  相似文献   

16.
Room‐temperature Na‐ion batteries (NIBs) have recently attracted attention as potential alternatives to current Li‐ion batteries (LIBs). The natural abundance of sodium and the similarity between the electrochemical properties of NIBs and LIBs make NIBs well suited for applications requiring low cost and long‐term reliability. Here, the first successful synthesis of a series of Na3(VO1?x PO4)2F1+2x (0 ≤ x ≤ 1) compounds as a new family of high‐performance cathode materials for NIBs is reported. The Na3(VO1?x PO4)2F1+2x series can function as high‐performance cathodes for NIBs with high energy density and good cycle life, although the redox mechanism varies depending on the composition. The combined first‐principles calculations and experimental analysis reveal the detailed structural and electrochemical mechanisms of the various compositions in solid solutions of Na3(VOPO4)2F and Na3V2(PO4)2F3. The comparative data for the Na y (VO1?x PO4)2F1+2x electrodes show a clear relationship among V3+/V4+/V5+ redox reactions, Na+?Na+ interactions, and Na+ intercalation mechanisms in NIBs. The new family of high‐energy cathode materials reported here is expected to spur the development of low‐cost, high‐performance NIBs.  相似文献   

17.
Indium oxide (In2O3) films were prepared on Al2O3 (0001) substrates at 700 °C by metal-organic chemical vapor deposition (MOCVD). Then the samples were annealed at 800 °C, 900 °C and 1 000 °C, respectively. The X-ray diffraction (XRD) analysis reveals that the samples were polycrystalline films before and after annealing treatment. Triangle or quadrangle grains can be observed, and the corner angle of the grains becomes smooth after annealing. The highest Hall mobility is obtained for the sample annealed at 900 °C with the value about 24.74 cm2·V-1·s-1. The average transmittance for the films in the visible range is over 90%. The optical band gaps of the samples are about 3.73 eV, 3.71 eV, 3.70 eV and 3.69 eV corresponding to the In2O3 films deposited at 700 °C and annealed at 800 °C, 900 °C and 1 000 °C, respectively.  相似文献   

18.
Nanocrystal V2O5 dispersion processed thin films are introduced as efficient hole extraction interlayer in normal architecture P3HT:PCBM solar cells. Both thin and rather thick interlayers are studied and demonstrated to work properly in organic photovoltaic. Nanocrystal V2O5V2O5 layers effectively block electrons and effectively extract holes at the ITO anode. Very constant and high VOC (above 0.56 V) are easily achieved. Comparable JSC and PCE are demonstrated for nanocrystal dispersion-processed devices when compared with amorphous sol–gel processed devices. The excellent functionality of nanocrystal V2O5 interlayers in Si-PCPDTBT:PCBM devices further demonstrates the broad application potential of this material class for photovoltaic applications.  相似文献   

19.
Phase relations in Cu-RO1.5-O(R < Ho,Er,Yb) ternary systems at 1273K have been established by isothermal equilibration of samples containing different ratios of Cu:R(R < Ho,Er,Yb) in flowing air or high purity argon atmosphere for four days. The samples were then rapidly cooled to ambient temperature and the coexisting phases were identified by powder x-ray diffraction analysis. Only one ternary oxide, Cu2R2O5(R < Ho,Er,Yb) was found to be stable. The chemical potential of oxygen for the coexistence of the three phase assemblage, Cu2O + R2O3 + Cu2R2O5(R < Ho,Er,Yb) has been measured by employing the solid-state galvanic cells,< (−) Pt, Cu2O + Ho2O3+ Cu2Ho2O5//CSZ//Air (Po2< 2.12 × 104 Pa), Pt (+) (−) Pt, Cu2O + Er2O3+ Cu2Er2O//CSZ//Air (Po2< 2.12 × 104 Pa), Pt (+) (−) Pt, Cu2O + Yb2O3 + Cu2Yb2O5//CSZ//Air (Po2 < 2.12 × 104 Pa), Pt (+) in the temperature range of 1000 to 1325K. Combining the measured emf of the above cells with the chemical potential of oxygen at the reference electrode, using the Nernst relationship, gives for the reactions, 2Cu2O(s) + 2Ho2O3(s) + O2(g) → 2Cu2Ho2O5(s) (1) 2Cu2O(s) + 2Er2O3(s) + O2(g) → 2Cu2Er2O5(s) (2) and 2Cu2O(s) + 2Yb2O3(s) + O2(g) → 2Cu2Yb2O5(s) (3) δΜo2 = −219,741.3 + 145.671 T (±100) Jmol−1 (4) δΜo2 = −222,959.8 + 147.98 T(±100) Jmol−1 (5) and δΜo2 = −231,225.2 + 151.847 T(±100) Jmol−1 (6) respectively. Combining the chemical potential of oxygen for the coexistence of Cu2O + R2O3 + Cu2R2O5(R Ho,Er,Yb) obtained in this study with the oxygen potential for Cu2O + CuO equilibrium gives for the reactions, 2 CuO(s) + Ho2O3(s) → Cu2Ho2O5(s) (7) 2 CuO(s) + Er2O3(s) → Cu2Er2O5(s) (8) and 2 CuO(s) + Yb2O3(s) → Cu2Yb2O5(s) (9) δG‡ < 22,870.3 − 23.160 T (±100) Jmol−1 (10) δG‡ < 21,261.1 − 22.002 T (±100) Jmol−1 (11) and δG‡ < 17,128.4 - 20.072 T (±100) Jmol-1 (12) It can be clearly seen that the formation of Cu2R2O5R < Ho,Er,Yb) from the component oxides is endothermic. Further, Cu2R2O5(R < Ho,Er,Yb) are an entropy stabilized phases. Based on the results obtained in this study, the oxygen potential diagram for Cu-R-O(R < Ho,Er,Yb) ternary system at 1273K has been composed.  相似文献   

20.
The metal-insulator phase transitions in V2O3 are considered archetypal manifestations of Mott physics. Despite decades of research, the effects of doping, pressure, and anisotropic strains on the transitions are still debated. To understand how these parameters control the transitions, anisotropically strained pure V2O3 films are explored with nearly the same contraction along the c-axis, but different degrees of ab-plane expansion. With small ab-plane expansion, the films behave similar to bulk V2O3 under hydrostatic pressure. However, with large ab-plane expansion, the films are driven into the “negative pressure” regime, similar to that of Cr-doped V2O3, exhibiting clear coexistence of paramagnetic insulator and paramagnetic metal phases between 180–500 K. This shows that c-axis contraction alone, or an increase in c/a ratio is insufficient for inducing “negative pressure” effects. Actually, c-axis contraction alone destabilizes the two insulating phases of V2O3, whereas a-axis expansion tends to stabilize them. The effects of strain are modeled using density functional theory providing good agreement with experimental results. The findings show that chemical pressure alone cannot account for the phase diagram of (V1−xCrx)2O3. This work enables to manipulate a Mott transition above room temperature, thereby expanding the opportunities for applications of V2O3 in novel electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号