首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(2):1775-1780
High-purity MgO ceramics with a relative density higher than 99.60% and a mean grain size of 8.1 µm were prepared by hot-pressing at 1450 °C and 35 MPa for 120 min. The MgO ceramic was 130 mm in diameter and 10 mm in height. The densification mechanism and grain growth of MgO powder during the sintering process were investigated based on the principles of general deformation and classical phenomenological kinetic theory. The threshold pressure of plastic deformation at the initial sintering stage was also analysed. The results suggest that plastic deformation is the dominant densification mechanism during the initial period and that an applied pressure of 20 MPa is sufficient for the deformation. During the final period, Mg2+ diffusion along the grain boundaries controls the densification process, and the grain growth activation energy at the final stage is estimated as 336.38±2.35 kJ mol−1.  相似文献   

2.
《Ceramics International》2017,43(11):8269-8275
The two-step sintering technique is a process of controlling the sintering curve, which provides materials with higher density and smaller grain size when compared to conventional sintering. This technique was evaluated by optical dilatometry with three commercial alumina powders of different purity (92, 96 and 99 wt% of Al2O3) and particle size (between 0.73 and 2.16 µm). Different sintering conditions in the first (temperature, T1) and second (temperature, T2, and holding time, t2) steps were studied in order to evaluate the effect of these variables on densification and grain growth. Considering T1 as the temperature at which a relative density (Drel) of 83% was achieved, and for the range of conditions tested, it was found that higher Drel values and lower grain size of alumina were obtained with higher T2 and lower t2. Alumina with 99 wt% purity sintered at T1 of 1550 °C for 5 min and T2 of 1500 °C for 4 h showed the best relationship between higher densification (~96% relative density) and reduced grain size (0.94±0.15 µm). Thus, this work demonstrated that suppression of grain growth can also be obtained for commercial alumina.  相似文献   

3.
《Ceramics International》2021,47(19):27453-27461
Silica-based ceramic cores are widely used in the manufacturing of hollow, nickel-based, superalloy turbine blades. However, elemental Hf, Ti, Al, and other active metals in the superalloy can react with silica-based ceramic cores during casting, resulting in a reduction in the quality of the turbine blades. In this study, both plasma spraying and sol-gel dipping methods were used to prepare alumina coatings on silica-based ceramic substrates to prevent the interfacial reaction. The performance of the alumina coatings prepared by both methods was evaluated by comparative analysis of the surface roughness, bonding interface morphologies, and the adhesive characteristics of the coating. The plasma-sprayed alumina coating has a roughness greater than 5 μm and peeled away from the substrate due to the difference in thermal expansion between SiO2 and Al2O3 at temperatures above 1500 °C, rendering the silica-based substrate with the plasma-sprayed alumina coating unfit for the application requirements of the casting process. The alumina coating prepared by the sol-gel dipping method improved the roughness of the substrate from Ra 2.39 μm to Ra 1.83 μm, and no peeling was observed when heated to 1550 °C for 30 min due to the pinning characteristics of the coating on the substrate. Furthermore, the interfacial reaction between the DZ125 superalloy melt and the silica-based substrate coated with alumina by sol-gel dipping method were investigated. The alumina coating effectively inhibited the interfacial reaction and no reaction products were detected during the directional solidification with pouring temperature of 1550 °C and withdraw rate of 5 mm/min. While a uniform, 4–5 μm thick HfO2 reaction layer formed between the uncoated substrate and the DZ125 alloy melt. Two dipping-drying cycles were required to ensure the alumina sol completely covered the surface of the substrate.  相似文献   

4.
The production of advanced fine-grained alumina by carbon nanotube addition   总被引:1,自引:0,他引:1  
Alumina and alumina + 1 vol.% carbon nanotube (CNT) composites were fully densified by spark plasma sintering. Post-sintering heat treatments (1300–1500 °C) were performed to completely oxidize CNTs and then densify the remaining 1 vol.% to produce fine-grained ceramics. The grain size and Vickers hardness of the heat-treated composites were compared with the monolithic alumina sintered without CNT addition. Compared to the initial powder particle size of alumina (D50: 356 ± 74 nm), minimal grain growth (∼450 nm) was observed for the fully dense heat-treated composites. A 25% improvement in Vickers hardness and >10 times finer average grain size were observed for alumina produced by the heat treatment (1300 °C) of alumina + 1 vol.% CNT composite, compared to alumina sintered without CNTs.  相似文献   

5.
Densification of nanocrystalline yttria stabilized zirconia (YSZ) powder with 8 mol% Y2O3, prepared by a glycine/nitrate smoldering combustion method, was investigated by spark plasma sintering, hot pressing and conventional sintering. The spark plasma sintering technique was shown to be superior to the other methods giving dense materials (≥96%) with uniform morphology at lower temperatures and shorter sintering time. The grain size of the materials was 0.21, 0.37 and 12 μm after spark plasma sintering, hot pressing and conventional sintering, respectively. Total electrical conductivity of the materials showed no clear correlation with the grain size, but the activation energy for spark plasma sintered materials was slightly higher than for materials prepared by the two other densification methods. The hardness, measured by the Vickers indentation method, was found to be independent on grain size while fracture toughness, derived by the indentation method, was slightly decreasing with increasing grain size.  相似文献   

6.
《Ceramics International》2017,43(17):15246-15253
MgAl2O4 nanoparticles (NPs) were prepared by sol–gel method using aluminium nitrate, magnesium nitrate and citric acid as starting materials, phenolic formaldehyde resin and carbon black as additives. Growth of MgAl2O4 NPs in different heat treatment conditions (temperature, atmosphere, carbon additives and in Al2O3-C system) was investigated. MgAl2O4 NPs were formed at 600 °C in air atmosphere with serious agglomeration of nanoparticles having diameter of approximate 30 nm. The size of MgAl2O4 NPs increased greatly from 40 to 50 nm to several hundreds of nanometres as the temperature was raised from 800 °C to 1400 °C. Partial sintering of NPs was observed upon heating at temperatures higher than 1200 °C in air. In reducing atmosphere, the size of MgAl2O4 NPs (about 30–50 nm) changed slightly with increasing temperature. This was attributed to the dispersion of carbon inclusions in the MgAl2O4 grain boundaries, inducing a steric hindrance effect and inhibiting the growth of particles. MgAl2O4 NPs (30–50 nm) in the Al2O3-C system were in-situ formed at high temperatures with the use of dried precursor gels. MgAl2O4 NPs can contribute to improving the thermal shock resistance of Al2O3-C materials.  相似文献   

7.
The dependence of grain size on the heating rate has been investigated for alumina ceramics prepared via spark plasma sintering (SPS). For this purpose, the local grain size has been determined via position-dependent microscopic image analysis, using two independent grain size measures (mean chord length and Jeffries grain size). For alumina ceramics prepared with heating rates between 5 and 100 °C/min (pressure 80 MPa, maximum temperature 1300 °C) it is found that for higher heating rates the grain size is smaller. However, the microstructural non-uniformity is so large that any grain size determination that does not take this non-uniformity into account becomes meaningless, because grain size gradients from the specimen periphery to the center are larger than the differences in grain size due to different heating rates. Temperature and pressure gradients are discussed as the most plausible reasons for the microstructural non-uniformity.  相似文献   

8.
The influence of various dopants (500 ppm MgO and Y2O3; 250 ppm ZrO2) on sintering of fine-grained alumina ceramics was evaluated by high-temperature dilatometry. The apparent activation energy of sintering was estimated with the help of Master Sintering Curve and a model proposed by Wang and Raj. The densification kinetics was controlled by at least two mechanisms operating at low (higher activation energy) and high (lower activation energy) densities. Good agreement between the activation energies calculated with both models was observed for low as well as for high densities. The lowest value of activation energy exhibited undoped alumina; the addition of MgO resulted in slight increase of the activation energy. Y2O3 and ZrO2 significantly inhibited the densification, which was reflected in the higher sintering activation energies. The low activation energies in the final sintering step indicates the importance of proper choice of sintering temperature, namely in the two-step sintering process.  相似文献   

9.
《Ceramics International》2022,48(22):33323-33331
The structural and magnetic properties of sol-gel synthesized Gd doped (x = 0.00 to 0.15) CoFe2O4 nanoparticles (NPs) have been studied. The x-ray diffraction (XRD) and FTIR spectroscopy along with Raman spectra confirmed the formation of face centered cubic inverse spinel structure. TEM images showed the NPs are well-dispersed with average particle size 30 nm. Room temperature magnetic measurement showed the value of coercivity fluctuates from 353 Oe to 1060 Oe for different % of Gd content. The maximum coercivity, saturation magnetization, magnetic moment, magnetic anisotropy, remnant magnetization found for 0.03% Gd content are 1060.19 Oe, 77.53 emu/gm, 3.29 μ, 4.11 × 104 erg/cm3, 32.38 emu/gm, respectively. The large value of coercivity indicated that the interparticle interactions and crystalline anisotropy are high. Thus CoFe2-xGdxO4 magnetic NPs might be a potential candidate for data processing, automotive and telecommunications.  相似文献   

10.
Dense submicron-grained alumina ceramics were fabricated by pulse electric current sintering (PECS) using M2+(M: Mg, Ca, Ni)-doped alumina nanopowders at 1250 °C under a uniaxial pressure of 80 MPa. The M2+-doped alumina nanopowders (0–0.10 mass%) were prepared through a new sol–gel route using high-purity polyhydroxoaluminum (PHA) and MCl2 solutions as starting materials. The composite gels obtained were calcined at 900 °C and ground by planetary ball milling. The powders were re-calcined at 900 °C to increase the content of α-alumina particles, which act as seeding for low-temperature densification. Densification and microstructural development depend on the M2+ dopant species. Dense alumina ceramics (relative density ≥99.0%) thus obtained had a uniform microstructure composed of fine grains, where the average grain size developed for non-doped, Ni-doped, Mg-doped and Ca-doped samples was 0.67, 0.67, 0.47 and 0.30 μm, respectively, showing that Ca-doping is the most promising method for tailoring of nanocrystalline alumina ceramics.  相似文献   

11.
A crystalline nanopowder of 3 mol% yttria-partially stabilized zirconia (3Y-PSZ) has been synthesized using ZrOCl2 and Y(NO3)3 as raw materials throughout a co-precipitation process in an alcohol-water solution. The phase transformation kinetics of the 3Y-PSZ freeze dried precursor powders have been investigated by nonisothermal methods. Differential thermal and thermogravimetric analyses (DTA/TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) have been utilized to characterize the 3Y-PSZ nanocrystallites. When the 3Y-PSZ freeze dried powders are calcined in the range of 703-1073 K for 2 h, the crystal structure is composed of tetragonal and monoclinic ZrO2. The BET specific surface area of the 3Y-PSZ freeze dried precursor powders calcined at 703 K for 2 h is 118.42 m2/g, which is equivalent to a crystallite size of 8.14 nm. The activation energy from tetragonal ZrO2 converted to monoclinic ZrO2 in the 3Y-PSZ freeze dried precursor powders was determined as 401.89 kJ/mol. The tetragonal (T) and monoclinic (M) ZrO2 phases coexist with a spherical morphology, and based on TEM examination have a size distribution between 10 and 20 nm. When sintering green compacts of the 3Y-PSZ, a significant linear shrinkage of 8% is observed at about 1283 K. On sintering the densification cycle is complete at approximately 1623 K when a total shrinkage of 32% is observed and a final density above 99% of theoretical was achieved.  相似文献   

12.
《Ceramics International》2023,49(3):4839-4845
Transparent Ce3+:(Gd,Lu)3Al5O12 with microstructure control was fabricated by two-step spark plasma sintering. In the two-step profile, the heating rate was changed from 50 to 5°C/min at the first step temperatures. During the initial stage of shrinkage, the holding time of the first step sintering could induce densification by suppressing the microstructure coarsening. As compared to the single-step profile, the two-step profile showed a smaller grain size, which decreased with a decrease in the first step temperature. The porosity of the two-step profile was lower than that of the single-step profile, and the lowest porosity was obtained at the first step temperature of 1000°C, which was the starting point of shrinkage. The TS-1000 specimen showed the highest transmittance among all specimens because of the microstructure control offered by the two-step profile. Thus, by employing the two-step profile, the transmittance could be increased from 50.1% (SS-1250) to 56.5% (TS-1000).  相似文献   

13.
《Ceramics International》2017,43(14):10784-10790
The pure phased nanocrystalline Li0.25Ni0.5ErxFe2.25−xO4 (x=0.00, 0.04) ferrites were synthesized by the sol-gel auto combustion route and subsequently annealed at different temperatures. Thermal behavior of as-prepared materials was examined by the thermogravimetric and differential thermal analyzer (TG/DTA). The crystal structure, grain size and morphology were determined by using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of the Er substitution as well as annealing temperatures on the structure, particle size and antibacterial properties were investigated. The antibacterial studies were carried out using both gram negative (Campylobacter jejuni, Enteropathogenic E. coli, Vibrio cholerae) and gram positive bacteria (Listeria monocytogenes and Staphylococcus aureus). The anti-biofilm activity of the doped nanocrystals was also evaluated. Doping of Er ions in Li-Ni ferrites enhanced antibacterial activity against the all tested bacteria. However, a marked decrease in the antibacterial activity of the doped nanocrystals was observed with the increase in the annealing temperature and the grain size. The significant reduction (P≤0.01) in the biofilm forming trends of all tested pathogens was noted when treated (doped nanocrystals) and untreated controls were compared. Campylobacter jejuni and Vibrio cholerae were found to be most susceptible to both the anti-bacterial (P≤0.01) and the anti-biofilm (P≤0.005) activities of the Li0.25Ni0.5Er0.04Fe2.21O4. The results indicated that Er doped Li-Ni nanoferrites can be used as a coating material to prevent the bacterial growth and the biofilm formation.  相似文献   

14.
A series of silicon-aluminum oxynitride-glass compositions containing selected rare-earth (RE) additions were prepared to examine the effects of specific RE, as well as Si:Al:RE and N:O ratio, on properties. The properties that were characterized included density, thermal expansion coefficient (α), glass-transition temperature ( T g), hardness ( H ), and Young's modulus ( E ). The compositions (in equivalent percent) selected included: 55 Si-20 RE-25 Al oxide and 80 O-20 N oxynitride, and 45 Si-30 RE-25 Al oxide and 70 O-30 N glasses. The results show that the density increased significantly with an increase in the RE atomic mass and slightly with an increase in N:O ratio. For each of the fixed Si-Al-RE-O-N compositions, the E , H , and T g values were each increased by substituting smaller RE ions, whereas the α value was decreased. For each specific cation composition and RE, increasing the N:O ratio systematically led to a decrease in the α values but an increase in the E , H , and T g values. The observed response in the glass properties to changes in composition appears to reflect modifications in the bonding within the glass network.  相似文献   

15.
Al2O3 nanopowders were synthesized by a simple chitosan-polymer complex solution route. The precursors were calcined at 800–1200 °C for 2 h in air. The prepared samples were characterized by XRD, FTIR and TEM. The results showed that for the precursors prepared with pH 3–9 γ-Al2O3 and δ-Al2O3 are the two main phases formed after calcination at 800–1000 °C. Interestingly, when the precursor prepared with pH 2 was used, α-Al2O3 was formed after calcination at 1000 °C, and pure α-Al2O3 was obtained after calcination at 1200 °C. The crystallite sizes of the prepared powders were found to be in the range of 4–49 nm, as evaluated by the XRD line broadening method. TEM investigation revealed that the Al2O3 nanopowders consisted of rod-like shaped particles and nanospheres with particle sizes in the range of 10–300 nm. The corresponding selected-area electron diffraction (SAED) analysis confirmed the formation of γ- and α-Al2O3 phases in the samples.  相似文献   

16.
C.R. Rambo 《Carbon》2005,43(6):1174-1183
Biomorphic (wood derived) carbide ceramics with an overall composition in the systems MeC/C (with Me = Si, Ti, Zr) were produced by vacuum infiltration of low viscosity organo-metallic colloidal suspensions into biologically derived carbon templates. After hydrolysis into Me(OH)4-gels, the Me(OH)4-gel/C-templates were submitted to a high temperature pyrolysis/reaction treatment at 1600 °C to promote (i) the polycondensation of the Me(OH)4-gels into the corresponding MeO2-phase and (ii) the carbothermal reaction of the MeO2 with the biocarbon template into highly porous, biomorphic SiC/C-, TiC/C- and ZrC/C-ceramics. The influence of the initial porosity of the biocarbon template on the final phase composition and morphology of the formed biomorphic MeC/C-ceramic composites is analysed.  相似文献   

17.
This paper proposes a method for the composition and synthesis of lead zirconate titanate (PZT) piezoelectric ceramic for use in energy harvesting systems. The proposed material consists of (1?x)Pb(Zr0.53Ti0.47)O3xBiYO3 [PZT–BY(x)] (x=0, 0.01, 0.02, 0.03, 0.04, and 0.05 mol) ceramics near the morphotropic phase boundary (MPB) region, prepared by a solid-state mixed-oxide method. The optimum sintering temperature was found to be 1160 °C, which produced high relative density for all specimens (96% of the theoretical density). Second phases were found to precipitate in the composition containing x≥0.01 mol of BY. It is shown that the addition of BY inhibits grain growth, and exhibits a denser and finer microstructure than those in the un-doped state. Fracture surface observation revealed predominant intergranular fracture for x=0 and x=0.01, while a mixed mode of transgranular and intergranular fracture appeared for x≥0.02. The optimal doping level was found to be x=0.01, for which a dielectric constant (K33T) of 750, a Curie temperature (TC) of 373 °C, a remnant polarization (Pr) of 50 µC/cm2, a piezoelectric constant (d33) of 350 pC/N, and an electro-mechanical coupling factor (kp) of 65% were obtained. In addition, the piezoelectric voltage constant (g33), and transduction coefficient (d33×g33) of PZT–BY(x) ceramics have been calculated. The ceramic PZT–BY(0.01) shows a considerably lower K33T value, but higher d33 and kp. Therefore, the maximum transduction coefficient (d33×g33) of 18,549×10?15 m2/N was obtained for PZT–BY(0.01). The large (d33×g33) indicates that the PZT–BY(0.01) ceramic is a good candidate material for energy harvesting devices.  相似文献   

18.
The high-temperature creep behaviour of high-purity alumina (A) and an alumina–mullite–zirconia nanocomposite (AZS) has been studied. The alumina–mullite–zirconia nanocomposite was prepared by using a colloidal processing route (powder–alkoxide mixtures). Creep tests were carried out in air in a 4-point-bending-fixture from 1200 to 1400 °C under constant stresses ranging from 30 to 220 MPa. Creep parameters (stress exponent n and activation energy Q) were correlated with microstructural features in order to determine the dominant creep mechanisms for both materials. The slow crack growth region (SCG), given by pairs of critical stress and the corresponding critical strain rate at the temperatures 1200, 1300 and 1400 °C of both materials was studied.

It was found that the creep rate of AZS was two orders of magnitude lower than the creep rate of undoped alumina A. The dominant creep mechanism of A is assumed to be a combination of grain boundary and lattice diffusion controlled creep. The creep mechanism for AZS is different and depends on the temperature. It is supposed that lattice diffusion controlled creep (Nabarro–Herring) is the dominant creep mechanism at 1200 °C, whereas at 1300 °C it is supposed to be grain boundary sliding accommodated by grain boundary diffusion. Comparing the slow crack growth region of both materials, a dramatic improvement was observed. The slow crack growth region of alumina is shifted nearly twice concerning the applied stresses for AZS at the temperatures 1200, 1300 and 1400 °C.  相似文献   


19.
Nanocrystalline Eu(3+), Tb(3+) co-doped Lu(2)O(3) powders with a maximum size of 25.5 nm were prepared by the sol-gel process, using lutetium, europium and terbium nitrates as precursors, and ethanol as a solvent. Differential thermal analysis (DTA) and infrared spectroscopy (IR) were used to study the chemical changes during the xerogel annealing. After the sol evaporation at 100 °C, the formed gel was annealed from 300 to 900 °C for 30 min under a rich O(2) atmosphere, and the yielded product was analyzed by X-ray diffraction (XRD) to characterize the microstructural behavior and confirm the crystalline structure. The results showed that Lu(2)O(3) nanopowders start to crystallize at 400 °C and that the crystallite size increases along with the annealing temperature. A transmission electron microscopy (TEM) study of samples annealed at 700 and 900 °C was carried out in order to analyze the microstructure, as well as the size, of crystallites. Finally, in regard to scintillating properties, Eu(3+) dopant (5 mol%), Tb(3+) codoped Lu(2)O(3) exhibited a typical red emission at 611 nm (D(°)→(7)F(2)), furthermore, the effect of Tb(3+) molar content (0.01, 0.015 and 0.02% mol) on the Eu(3+) radioluminiscence was analyzed and it was found that the higher emission intensity corresponds to the lower Tb(3+) content.  相似文献   

20.
《Ceramics International》2022,48(11):15613-15621
To explore the impact of the sintering rate on the microstructure and mechanical properties of cermets, the preparation of (Ti,W)C cermets by ultrafast sintering via spark plasma sintering (SPS) is reported. Compared with a slow heating rate, the electric field produced by an ultrafast heating rate enhances the liquid phase mass transfer of the metal binder phase, thus achieving rapid densification of (Ti,W)C cermets and effectively inhibiting abnormal grain growth. However, an excessive heating rate will lead to an “overflow” phenomenon, which reduces the grain growth difficulty and the bonding strength between grains. The results show that when the heating rate is 500 °C/min, the liquid phase mass transfer is moderate, the densification degree is the highest and the mechanical properties are excellent. The flexural strength, Vickers hardness and fracture toughness are 1340.90 ± 23.55 MPa, 18.42 ± 0.46 GPa and 11.96 ± 0.23 MPa?m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号