共查询到20条相似文献,搜索用时 15 毫秒
1.
Atsushi Tsutsumi Hidehiko Suzuki Yasushi Saito Kunio Yoshida Ryohei Yamazaki 《Powder Technology》1998,100(2-3):237-241
The granulation of multi-component particles was conducted in a fast fluidized bed with an atomizing binder solution. The effects of gas velocity and binder droplet diameter on granulation rate, granule size distribution and granule composition were studied. The granulation rate and granule yield were determined by the balance between the agglomeration rate of feed particles and the disintegration rate of granules because there was no secondary granulation. With the increase in gas velocity and the reduction in binder droplet size, the agglomeration rate of feed particles decreased but the disintegration rate of granules increased, resulting in a reduced granule yield. Despite the larger fraction of small particles in the granules, the homogenous granulation of multi-component particles was achieved. 相似文献
2.
Maureen S. van Buijtenen Willem-Jan van Dijk Niels G. Deen J.A.M. Kuipers T. Leadbeater D.J. Parker 《Chemical engineering science》2011,(11):2368
In this paper we study the effect of multiple spouts on the bed dynamics in a pseudo-2D triple-spout fluidized bed, employing the discrete particle model (DPM) and non-intrusive measurement techniques such as particle image velocimetry (PIV) and positron emission particle tracking (PEPT). A flow regime map was constructed, revealing new regimes that were not reported so far. The multiple-interacting-spouts regime (C) has been studied in detail for a double- and triple-spout fluidized bed, where the corresponding fluidization regime for a single-spout fluidized bed has been studied as a reference case. The experimental results obtained with PIV and PEPT agree very well for all the three cases, showing the good performance of these techniques. The DPM simulation results slightly deviate from the experiments which is attributed to particle–wall effects that are more dominant in pseudo-2D beds than in 3D systems. The investigated multiple-interacting-spouts regime is a fully new flow regime that does not appear in single-spout fluidized beds. Two flow patterns have been observed, viz. particle circulation in between the spouts near the bottom of the bed, and an apparent single-spout fluidization motion at a higher location upwards in the bed. These findings show that the presence of multiple spouts in a spout fluidized bed highly affect the flow behaviour, which cannot be distinguished by solely investigating single-spout fluidized beds. 相似文献
3.
Discrete element method (DEM) modeling is used in parallel with a model for coalescence of deformable surface wet granules. This produces a method capable of predicting both collision rates and coalescence efficiencies for use in derivation of an overall coalescence kernel. These coalescence kernels can then be used in computationally efficient meso-scale models such as population balance equation (PBE) models. A soft-sphere DEM model using periodic boundary conditions and a unique boxing scheme was utilized to simulate particle flow inside a high-shear mixer. Analysis of the simulation results provided collision frequency, aggregation frequency, kinetic energy, coalescence efficiency and compaction rates for the granulation process. This information can be used to bridge the gap in multi-scale modeling of granulation processes between the micro-scale DEM/coalescence modeling approach and a meso-scale PBE modeling approach. 相似文献
4.
Reducing the size of gas bubbles can significantly improve the performance of gas-solid fluidized reactors. However, such a control of bubbles is difficult to realize without measures that either use a lot of energy or deteriorate the fluidization behavior. In this paper, we present the results of discrete particle simulations of an electric-field enhanced fluidized bed, and compare these results to experimental data.The simulations show a significant effect on the size of bubbles, both with horizontal and vertical electric-fields applied. When the field strength is increased to values higher than those used in the experiments, the particles are found to form strings in the direction of the electric field. At very high field strengths, defluidization is observed, consistent with the experiments.Through the analysis of the bubble behavior, it is concluded that moderate strength electric fields distribute gas more evenly at the bottom of the bed. As the bubbles rise through the bed, the coalescence rate is lower because of the guiding paths, or resistance, the particles form due to the field. This results in a smaller average bubble size in the higher region of the bed. The simulations presented here show how and why the electric fields reduce bubble size in electric-field enhanced fluidized beds. 相似文献
5.
Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed 总被引:1,自引:0,他引:1
S.E. Naeini 《Powder Technology》2009,195(2):83-186
A discrete element model was developed to model granular flow in different vibratory beds and the results are compared with experimental measurements of bulk flow velocity and bed expansion. The sensitivity of the model predictions to the contact parameters was considered and the parameters were optimized with respect to the experimental results. The difference between the model predictions of the bulk flow velocity and the measurements was less than 10% at four locations in media beds of two depths. The average bulk density of the vibrating beds was also predicted to be within 10% of the measured values. 相似文献
6.
Previous studies aimed at determining the spatial accuracy of electrical capacitance tomography (ECT) have employed phantoms placed within the ECT measurement space. No previous studies have compared ECT with a second independent measurement technique in an operating fluidized bed. In the present work, radial voidage profiles have been measured with ECT in the 0.14-m I.D. riser of a circulating fluidized bed (CFB) and in a bubbling fluidized bed with a 0.19-m I.D. The dynamic and time-averaged radial voidage profiles have been compared with measurements taken with a fibre optic probe in the same riser and in a slightly narrower (0.15-m I.D.) bubbling fluidized bed. In spite of the intrusiveness of the latter technique, the time-averaged radial profiles in the CFB riser fall within 10% of each other when the CFB is operated at high-flux conditions that lead to a very dense wall region. Iterative reconstruction of the ECT images is not needed in this case. Similar agreement is found between the two techniques in the bubbling fluidized bed, but off-line iterative image reconstruction is clearly necessary in this fluidization regime. These results suggest that ECT, which is often described as a tomographic imaging technique with low spatial resolution, can in fact provide semi-quantitative time-averaged images of the cross-section of fluidized beds of diameter comparable to or less than that used here. 相似文献
7.
Experiments have shown that distributed secondary gas injection via a fractal injector in fluidized beds can significantly reduce the bubble size, and may also decrease the bubble fraction. In order to gain insight into the distribution of the gas between the phases and the mechanisms behind these effects simulations of small bubbling fluidized beds with one or two secondary gas injection points were carried out using a discrete particle model. Although the systems are very small, so that wall effects cannot be excluded, the model predicts that the bubble size and bubble fraction both decrease with secondary gas injection, while the gas flow through the dense phase increases. The secondary gas tends to stay in the dense phase, which limits the amount of gas available to form bubbles and is the main contributor to the decrease in the bubble size and fraction. The gas-solid contact improves as a result. 相似文献
8.
9.
Despite knowing that particle shape plays a significant role in the dynamics of powder flow, most discrete element method (DEM) simulations utilize spherical particles. The reasons for using spheres are that (a) the contact detection scheme for spherical particles is simple, and (b) the contact force models for contacting spheres are well known (e.g. a Hertzian contact).Several schemes for modeling non-spherical particles have been proposed including those that involve polyhedra, ellipsoids, sphero-cylinders, and superquadrics. Perhaps the most common approach for modeling non-spherical particles, however, is using “glued spheres,” in which irregular particle shapes are produced by rigidly connecting individual, and possibly overlapping, spheres. The advantage of the glued-spheres approach is that even for complex particle shapes the simple spherical contact detection algorithm may be retained.Recent publications have focused on how approximating a given particle shape using a glued-sphere geometry affects the rebound of colliding particles [e.g. Price, M., Murariu, V., Morrison, G., 2007. Sphere clump generation and trajectory comparison for real particles. In: Fourth International Conference on Discrete Element Methods (DEM), Brisbane, Australia; Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V., 2008. A study on the validity of the multi-sphere discrete element method, Powder Technology 188 (2), 153-165]. These investigations have focused on the errors introduced by approximating the geometry of the true particle shape. What has not been investigated, however, is how the spherical particle derived force models used in glued-sphere particle geometries influence the response of particle collisions. This paper demonstrates that in instances where more than a single component sphere in a glued-sphere model is involved in a contact, a modified force model must be used to produce an accurate force-deflection response. 相似文献
10.
11.
12.
Flow behavior of magnetizable particles is simulated in a two-dimensional gradient magnetically assisted bubbling fluidized bed. The motion of particles is simulated by discrete element method (DEM) with the consideration of external magnetic forces at a constant gradient magnetic field along bed height. The distributions of velocity and concentration of magnetizable particles are analyzed at the different magnetic field intensities. The simulations show a significant effect on the motion of particles with vertical magnetic-fields applied. When the magnetic field strength is increased to a value at which the fluidization of strings starts, the particles are found to form straight-chain aggregates in the direction of the magnetic field. At very high magnetic field strengths, defluidization is observed. Gas pressure drop of bed decreases with the increase of magnetic-flux densities. The granular temperature of particles increases, reaches a maximum, and then decreases with the increase of magnetic-flux density. Through the analysis of the motion of particles, it is concluded that the moderate strength magnetic field gives a high fluctuation of particles and distribute gas more evenly in the bed. 相似文献
13.
Hideya Nakamura 《Chemical engineering science》2007,62(11):3043-3056
This paper describes the numerical analysis of particle mixing in a rotating fluidized bed (RFB). A two-dimensional discrete element method (DEM) and computational fluid dynamics (CFD) coupling model were proposed to analyze the radial particle mixing in the RFB. Spherical polyethylene particles (Geldart group B particles) were used as model particles under the assumptions that they were cohesionless and mono-disperse with their diameter of 0.5 mm.The validity of the proposed model was confirmed by the comparison between the calculated degree of particle mixing and the experimental one, which was obtained by measuring the lightness of the recorded image taken by a high-speed video camera. Effects of the operating parameters (gas velocity, centrifugal acceleration, particle bed height, and vessel radius) on the radial particle mixing rate were numerically analyzed. The radial particle mixing rate was found to be strongly affected by the bubble characteristics, especially by the bubble size. The mathematical model for the rate coefficient of particle mixing as functions of operating parameters was empirically proposed. The radial particle mixing rate in a RFB could be well correlated by the three dimensionless numbers: dimensionless acceleration (Ac), bubble Froude number (Frb), and dimensionless radius on the surface of particle bed (βs). 相似文献
14.
Design, simulation, and performance of a draft tube spout fluid bed coating system for aerogel particles 总被引:1,自引:0,他引:1
A draft tube spout fluid bed coating system was designed to coat porous aerogel particles in a size range from 0.1 to 2 mm in diameter. Its primary objective was to insure that just the outer surface of the particles was coated. The inner, pore surface area of the particles needed to remain open to preserve their insulating properties. This paper discusses the design, simulation, and experimental results we obtained on the actual coating of 1-3 mm particles. A conventional, pharmaceutical coating, Surelease®, was used as the coating material and the system successfully coated the particles without penetration of the coating material into the particles. The apparatus can be used to coat friable, low density particles as well as those of high density and is well suited for other coating applications including those in the pharmaceutical industry. 相似文献
15.
Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion 总被引:1,自引:0,他引:1
In chemical-looping combustion (CLC) a gaseous fuel is burnt with inherent separation of the greenhouse gas carbon dioxide. The oxygen is transported from the combustion air to the fuel by means of metal oxide particles acting as oxygen carriers. A CLC system can be designed similar to a circulating fluidized bed, but with the addition of a bubbling fluidized bed on the return side. Thus, the system consists of a riser (fast fluidized bed) acting as the air reactor. This is connected to a cyclone, where the particles and the gas from the air reactor are separated. The particles fall down into a second fluidized bed, the fuel reactor, and are via a fluidized pot-seal transported back into the riser. The gas leaving the air reactor consists of nitrogen and unreacted oxygen, while the reaction products, carbon dioxide and water, come out from the fuel reactor. The water can easily be condensed and removed, and the remaining carbon dioxide can be liquefied for subsequent sequestration.The gas leakage between the reactors must be minimized to prevent the carbon dioxide from being diluted with nitrogen, or to prevent carbon dioxide from leaking to the air reactor decreasing the efficiency of carbon dioxide capture. In this system, the possible gas leakages are: (i) from the fuel reactor to the cyclone and to the pot-seal, (ii) from the cyclone down to the fuel reactor, (iii) from the pot-seal to the fuel reactor. These gas leakages were investigated in a scaled cold model. A typical leakage from the fuel reactor was 2%, i.e. a CO2 capture efficiency of 98%. No leakage was detected from the cyclone to the fuel reactor. Thus, all product gas from the air reactor leaves the system from the cyclone. A typical leakage from the pot-seal into the fuel reactor was 6%, which corresponds to 0.3% of the total air added to the system, and would give a dilution of the CO2 produced by approximately 6% air. However, this gas leakage can be avoided by using steam, instead of air, to fluidize the whole, or part of, the pot-seal. The disadvantages of diluting the CO2 are likely to motivate the use of steam. 相似文献
16.
Mitali Das 《Powder Technology》2007,178(3):179-186
Segregation and mixing effects of binary mixtures of particles having difference in sizes and densities were studied in 0.1016 m-diameter riser of a circulating fluidized bed at gas velocities between 2.01 and 4.681 m/s and solids circulation rate between 12.5 and 50 kg/m2 s. Two groups of bed materials (three quartz sand-spent fcc catalyst mixtures with different initial mass % of sand and two coal-iron mixtures, one with almost same sizes but with different densities and the other having both different sizes and densities) were used. Using local axial mass % of heavier/coarser particles and their mean sizes the extent of segregation was evaluated. The influence of operating conditions like superficial gas velocity and solids circulation rate on segregation was examined and found that with their increase segregation effects generally tend to decrease and a uniform mixture conforming to initial composition of the mixture results. Using the data available in the literature and those of the present authors an empirical correlation to obtain the extent of segregation in CFBs has been proposed. 相似文献
17.
J. Shu V. I. Lakshmanan C. E. Dodson 《Chemical Engineering and Processing: Process Intensification》2000,39(6):499-506
Hydrodynamic behavior of a newly developed toroidal fluidized bed reactor is studied in this work. The reactor has a gas distributor consisting of angled blades in an annular ring at the reactor bottom. The driving force for particles to move over the distributing blades comes from the velocity head of gas jets accelerated upon entering the blade spacing. Relevant hydrodynamic behaviors are measured with various inert materials in a pilot scale 400-mm toroidal fluidized bed reactor. The observed hydrodynamic behavior is found to be essentially predictable at ambient temperature by conventional hydrodynamic models. Fine particle tracking on the reactor wall is clearly observed through oxidation of zinc dross at a bed temperature of around 1120°C, and is simulated on the basis of a simplified mathematical model. Hydrodynamic issues, such as particle flying trajectory and retention time in the reactor, are discussed based on the developed model. 相似文献
18.
19.
M.S. van Buijtenen K. Buist N.G. Deen J.A.M. Kuipers T. Leadbeater D.J. Parker 《American Institute of Chemical Engineers》2012,58(8):2524-2535
The effect of elevating the spout on the dynamics of a spout‐fluidized bed, both numerically and experimentally is studied. The experiments were conducted in a pseudo‐two‐dimensional (2‐D) and a cylindrical three dimensional (3‐D) spout‐fluidized bed, where positron emission particle tracking (PEPT) and particle image velocimetry (PIV) were applied to the pseudo‐2‐D bed, and PEPT and electrical capacitance tomography (ECT) to the cylindrical 3‐D bed. A discrete particle model (DPM) was used to perform full 3‐D simulations of the bed dynamics. Several cases were studied, that is, beds with spout heights of 0, 2, and 4 cm. In the pseudo‐2‐D bed, the spout‐fluidization and jet‐in‐fluidized‐bed regime, were considered first, and it was shown that in the spout–fluidization regime, the expected dead zones appear in the annulus near the bottom of the bed as the spout is elevated. However, in the jet‐in‐fluidized‐bed regime, the circulation pattern of the particles is affected, without the development of stagnant zones. The jet‐in‐fluidized‐bed regime was further investigated, and additionally the experimental results obtained with PIV and PEPT were compared with the DPM simulation results. The experimental results obtained with PIV and PEPT agreed mutually very well, and in addition agreed well wtih the DPM results, although the velocities in the annulus region were slightly over predicted. The latter is probably due to the particle‐wall effects that are more dominant in pseudo‐2‐D systems compared with 3‐D systems. In the jet‐in‐fluidized‐bed regime, the background gas velocity is relatively high, producing bubbles in the annulus that interact with the spout channel. In the case of a non elevated spout, this interaction occurs near the bottom of the bed. As the spout is elevated, this interaction is shifted upwards in the bed, which allows the bubbles to remain undisturbed providing the motion of the particles in the annulus near the bottom of the bed. As a result, no dead zones are created and additionally, circulation patterns are vertically stretched. These findings were also obtained for the cylindrical 3‐D bed; although, the effects were less pronounced. In the cylindrical 3‐D bed the PEPT results show that the effect on the bed dynamics starts at hspout =1 4 cm, which is confirmed by the ECT results. Additionally, ECT measurements were conducted for hspout =1 6 cm to verify if indeed the effect happens at larger spout heights. The root mean square of the particle volume fraction slightly increased at hspout =1 2 cm, whereas a larger increase is found at hspout = 4 and 6 cm, showing that indeed more bubbles are formed. The presented results have not been reported so far and form valuable input information for improving industrial granulators. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2524–2535, 2012 相似文献
20.
Pyrolysis and steam gasification of nickel-loaded Yallourn coal were carried out in a fluidized bed reactor at ambient pressure. The pyrolysis mode was influenced by the addition of nickel catalyst. The yield of total volatile matter decreased whereas the gas yield markedly increased, when compared with uncatalysed pyrolysis. This is considered to result from tar decomposing on the catalyst and being converted to gases and deposited carbon. For the catalysed steam gasification, ≈ 80 wt% of coal conversion was achieved at 873 K and the gas yield was twelve times as much as that for the uncatalysed reaction. The homogeneous equilibrium in the gas phase controlled the composition of the product gas. The product gas contained little tarry material and a negligible amount of hydrogen sulphide. Nickel was efficiently recovered from the residue by an ammonia-leaching method. 相似文献