首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Blomqvist  B Mannfors  L.-O Pietilä 《Polymer》2002,43(17):4571-4583
In this paper static amorphous state properties (solubility parameter, free volume (using the Voorintholt method and the Voronoi tessellations) and pair correlation functions, the last ones also by including water molecules in the cells), which can be related to the probability for water uptake, have been studied for polyglycolic (PGA), poly(l-lactic) (PLLA), poly(l,d-lactic) (PLLA/PDLA) and poly(glycolic/l-lactic) (PGA/PLLA) acids, known to be biodegradable polymers. The polymer consistent force field, as modified by the authors, has been used in the calculations. The main purpose of this paper is to investigate, which of the amorphous state properties would be relevant for water uptake. We also discuss the validity of th6e methods used for these kinds of studies, and the related reliability of the computed results. Chain flexibilities of the studied polyesters in the amorphous phase have been analyzed, and the intermolecular interactions are found to cause the most significant variations in the distributions of the adjacent chain dihedral angle pairs and in the related populations of the low-energy regions of the comonomers. The solubility parameters, as calculated from the cohesion energy densities of the constructed models, suggest PGA being most compatible with water, in agreement with experiments. On the other hand, the quantitative structure-property relationships method ‘Synthia’ suggests a very similar solubility in water for all particular polyesters. In the PLAs and PGA/PLLA, however, a larger number of hydrogen bonds is formed between the water molecules and the carbonyl oxygen atoms of the chains showing a better possibility of PLLA and its copolymers to break into shorter chains. As an explanation, the hydrophobic methyl groups of the lactide units are suggested to push the water molecules closer to the carbonyl groups than in homo-PGA.  相似文献   

2.
The effects of multi-wall carbon nanotubes (MWCNTs) and poly(ethylene oxide) (PEO) on the structure formation, morphology, crystallization behavior and mechanical property of electrospun poly (l-lactic acid) (PLLA) nanofiber mats were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and mechanical test. If incorporate hard filler, MWCNTs into electrospun PLLA nanofiber, the crystallinity, chain orientation, and crystallization behaviors were almost not influenced by the MWCNTs content owing to the MWCNTs mainly acted as impeding the crystal growth and chain diffusion. If incorporate small content of soft and miscible component, PEO (10 wt%) into the electrospun PLLA and PLLA/MWCNTs nanofibers, the crystallinity and crystallization rate of PLLA in nanofibers were obviously enhanced. The synergistic effect of PEO and MWCNTs in PLLA nanofibers was observed during melt-crystallization behaviors of PLLA/MWCNTs fibers. Based on those results, we found that the chain mobility is an important factor to influence the structure formation and crystallization behaviors in the electrospun nanofibers. Our results indicated that the structure and properties of electrospun nanofibers could be optimized by compounding with hard inorganic filler and soft polymer components.  相似文献   

3.
The crystallization behavior of poly(l-lactic acid) was studied in the range of 80-160 °C. The peak crystallization time (τp) was defined and obtained from the crystallization isotherm measured with a differential scanning calorimeter (DSC). Isothermal crystallization temperature (Tc) dependence of log(τp) discretely changed at 113 °C (= Tb). The linear growth rate of spherulite, G, was measured with a polarizing microscope. The Tc dependence of G and the size of the spherulite also discretely changed at Tb. Crystal structures for samples isothermally crystallized at temperatures which were higher and lower than Tb were orthorhombic (α-form) and trigonal (β-form), respectively. The discrete change of the crystallization behavior was explained by the formation of different crystal.  相似文献   

4.
In this study, a series of poly(l-lactic acid) (PLLA)/poly(ethylene oxide) (PEO) blends with different PLLA concentrations was prepared. Films of these blends crystallized with and without a coverslip were characterized by the presence and absence of banded structures, respectively. This difference in morphology was observed because the PEO component of the blends was oxidized at a high temperature (125 °C) in air without the protection of a coverslip. X-ray photoelectron spectroscopy (XPS) results showed that the surface of the blends crystallized in nitrogen without a coverslip contained mostly PLLA while the surfaces of the same blends crystallized under a coverslip contained only a moderately higher concentration of PLLA than their bulks. The migration of PLLA to the surface of the blends during crystallization in nitrogen when no coverslip was used was due to its low surface tension. Phase images obtained using atomic force microscopy (AFM) indicated that the banded structures consisted of valleys and ridges, which were in fact flat-on and edge-on lamellae, respectively. A detailed time-of-flight secondary ion mass spectrometry (ToF-SIMS) examination suggested that PLLA and PEO were located mainly on the surfaces of the ridges and valleys, respectively.  相似文献   

5.
H. Yamane  K. Sasai 《Polymer》2003,44(8):2569-2575
Thermal property and crystallization behavior of PLLA blended with a small amount of PDLA (1-5 wt%) were studied. PDLA molecules added in PLLA formed stereocomplex crystallites in the PLLA matrix. When the blend was cooled to a temperature below Tm of PLLA, stereocomplex crystallites acted as nucleation sites of PLLA and enhanced the crystallization of PLLA significantly (heterogeneous nucleation). Such crystallization enhancement was not observed when the blend with lower PDLA content was cooled from 240 °C at which both PLLA crystal and the stereocomplex disappeared. Low molecular weight PDLA isolated in the matrix of PLLA did not form a stereocomplex crystallite with a large surface area enough to act as a nucleation site. On the other hand, high molecular weight PDLA chains formed a large stereocomplex crystallite. With increasing PDLA content, stereocomplex crystallites were more easily formed and they acted as nucleation sites. PLLA crystal near the stereocomplex crystallites has an incomplete structure and showed a melting peak at a lower temperature than pure PLLA crystal.  相似文献   

6.
Eamor M. Woo  Ling Chang 《Polymer》2011,52(26):6080-6089
Crystallization of nonequimolar compositions of poly(d-lactic acid) with low-molecular-weight poly(l-lactic acid) (PDLA/LMw-PLLA) blends leads to formation of various fractions of stereocomplexed PLA (sc-crystallites) and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA = 90/10, atomic-force microscopy (AFM) characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites.  相似文献   

7.
Poly(l-lactic acid) (PLLA) has poor heat stability above its glass transition temperature (Tg∼60 °C). To improve its softing above Tg, PLLA was mixed with small amount of crosslinking agents and irradiated with various irradiation doses to introduce crosslinking between polymer chains. The most effective agent for radiation crosslinking was triallyl isocyanurate (TAIC). For melt-quenched PLLA, it was found that the most optimal conditions to introduce crosslinking were around 3% of TAIC and the irradiation dose of 50 kGy. The typically crosslinked PLLA showed very low crystallinity because of wide formation of molecular chain network that inhibited molecular motion for crystallization. Notable heat stability above Tg was given by annealing of PLLA samples. Enzymatic degradation of PLLA was retarded with introduction of crosslinks.  相似文献   

8.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications.  相似文献   

9.
Stereoregular high polymers of poly(l-lactic acid) (PLLA) (Mw 1.2 × 105, isotacticity 96.0%) and poly(d-lactic acid) (PDLA) (Mw 1.0 × 105, isotacticity 98.6%) were successfully synthesized via melt/solid polycondensation (MP/SSP) using a biogenic catalyst creatinine (CR). The follow-up monitor of the polycondensation products with 13C NMR technique revealed that the polymerization of MP/SSP proceeded in a stereochemical controlled way throughout the whole process as evidenced by the constant high values of isotacticity (97.8–99.4%) of produced polymers. Thermogravimetric analysis demonstrated that the decomposition temperatures (Td,init 324.3 °C, Td, 5% 347.0 °C, Td, max 400.2 °C) of PLLA synthesized with catalyst CR are over 100 °C above those of PLLA synthesized with catalyst SnCl2·2H2O.  相似文献   

10.
Fractionated samples of d,l-poly(lactic acid) (PLA) were prepared and the dielectric normal mode relaxation was studied for dilute and semi-dilute solutions of the PLA in a good solvent benzene. Results indicate that in the dilute regime the normal mode relaxation time is proportional to [η]Mw in agreement with the Rouse-Zimm theory, where [η] and Mw denote the intrinsic viscosity and weight average molecular weight, respectively. The dielectric relaxation strength which is proportional to the mean square end-to-end distance 〈r2〉 increases with increasing Mw with the power of 2ν, where ν is the excluded volume parameter determined from [η]. The relaxation time in the semi-dilute regime increases with increasing concentration C due to increases of the entanglement density and the friction coefficient. The relaxation time corrected to the iso-friction state agrees approximately with the dynamic scaling theories. The relaxation strength decreases with increasing concentration indicating that 〈r2〉 decreases on account of the screening of the excluded volume effect. The concentration dependence of 〈r2〉 agrees approximately with the scaling theory proposed by Daoud and Jannink.  相似文献   

11.
Shifeng Yan  Yan Yang  Jia Ma 《Polymer》2007,48(6):1688-1694
A new surface modification method by grafting l-lactic acid oligomer onto the surface silanol groups of silica nanoparticles has been developed. The surface-grafting reaction is confirmed by IR and 29Si MAS NMR analyses. TEM and SEM results show that grafted SiO2 (g-SiO2) nanoparticles can be comparatively uniformly dispersed in chloroform or PLLA matrix, while the unmodified SiO2 nanoparticles tend to aggregate. The loading of g-SiO2 nanoparticles in poly(l-lactide) (PLLA) matrix greatly improves the toughness and tensile strength of this material. In contrast, the incorporation of un-grafted SiO2 nanoparticles into PLLA leads to the deterioration of its mechanical properties. DSC analysis shows that g-SiO2 nanoparticles can serve as a nucleating agent for the crystallization of PLLA in the composites. SEM characterization shows the tough characteristics and great interfacial combination strength for g-SiO2 (5 wt%)/PLLA nanocomposites.  相似文献   

12.
Among the various inorganic nucleators examined, Talc and an aluminum complex of a phosphoric ester combined with hydrotalcite (NA) were found to be effective for the melt-crystallization of poly(l-lactide) (PLLA) and PLLA/poly(d-lactide) (PDLA) stereo mixture, respectively. NA (1.0 phr (per one hundred resin)) can exclusively nucleate the stereocomplex crystals, while Talc cannot suppress the homo crystallization of PLLA and PDLA in the stereo mixture. Double use of Talc and NA (in 1.0 phr each) is highly effective for enhancing the crystallization temperature of the stereo complex without forming the homo crystals. The stereocomplex crystals nucleated by NA show a significantly lower melting temperature (207 °C) than the single crystal of the stereocomplex (230 °C) in spite of recording a large heat of crystallization ΔHc (54 J/g). Photomicrographic study suggests that the spherulites with a symmetric morphology are formed in the stereo mixture added with NA while the spherulites do not grow in size in the mixture added with Talc. The exclusive growth of the stereocomplex crystals by the melt-crystallization process will open a processing window for the PLLA/PDLA.  相似文献   

13.
A novel cytocompatible graft copolymer of chitosan and l-lactic acid (CL) was prepared by grafting l-lactic acid onto the amino groups in chitosan without a catalyst. The structures of the CL graft copolymers were characterized by FTIR, 13C-NMR and X-ray measurements. Degree of substitution and side-chain length were evaluated from salicylaldehyde and elemental analysis. The tensile strength and water uptake of the CL copolymers films were investigated as a function of feed ratio of LA/CS. The influence of pH on the swelling behavior of the copolymer films was determined and interpreted. Fibroblast culture was performed to evaluate cell proliferation on the copolymers films. The results showed that the cell growth rate on the copolymers films is faster than chitosan obviously.  相似文献   

14.
Effects of crystallization temperature and time on the melting behavior of poly(l-lactic acid) were studied with differential scanning calorimetry (DSC). The isothermal crystallization was performed at various temperatures (Tcs), and DSC melting curves for the isothermally crystallized samples were obtained at 10 K min−1. When Tc was lower than Td (∼135 °C), the double melting peaks appeared. The melting behavior, especially Tc dependence of the melting temperature (Tm), discretely changed at Tb (=113 °C), in accordance with the discrete change of the crystallization behavior at Tb, which was previously reported. When Tc was higher than Td, a single melting peak appeared. In addition, Tc dependence of dTm/dTc discretely changed at Td. That is, the melting behavior, especially Tc dependence of Tm and dTm/dTc, are different in three temperature regions of Tc divided by Tb and Td: Regions I (Tc ≤ Tb), II (Tb ≤ Tc ≤ Td), and III (Td ≤ Tc). The effect of crystallization time on the melting behavior, melting temperature and heat of fusion in each temperature region of Tc is also discussed.  相似文献   

15.
In this study, poly(l-lactic acid) (PLLA) fibers were prepared by the dry-wet-spinning method, while chitosan (CHS) fibers were prepared via the wet-spinning method. The two fibers were blend spun and then fabricated into PLLA/CHS fabrics. In vitro degradation experiments of the fabrics were carried out in a phosphate-buffered solution at 37 °C with a pH of 7.4. Changes in molecular parameters (molecular weights and molecular weight distributions), phase structures (crystallinities), morphologies (fiber surface topologies) of the PLLA fibers, and their macroscopic properties (the fabric weight losses and mechanical strengths) were monitored with degradation times. These results were compared with control samples with no degradation. The hydrolysis mechanism of PLLA/CHS fabrics was analyzed. It was found that the degradation rate of dry-wet-spun PLLA fibers was higher than those of the melt-spun or dry-spun ones. Furthermore, the compatibility between PLLA/CHS fabrics and osteoblast under the in vitro degradation was investigated for the potential application of using the PLLA/CHS fabrics as supporting materials for chest walls and bones. Cell strain hFOB1.19 human SV40-transfected osteoblast and PLLA/CHS mixed fabrics were incubated. The cell morphology at early stages of cultivation was also studied. Excellent adhesion between osteoblast and PLLA/CHS fabrics was observed, indicating good biocompatibility of the fabrics with osteoblast.  相似文献   

16.
Poly(vinyl acetate-co-vinyl alcohol) copolymers [P(VAc-co-VA)] were prepared by acidic hydrolysis of poly(vinyl acetate) (PVAc) at various reaction time, and the degree of hydrolysis was analyzed by 13C nuclear magnetic resonance spectroscopy (NMR). Blends of poly(l-lactic acid) (PLA) and P(VAc-co-VA) were prepared by a solvent casting method using chloroform as a co-solvent. The PLA/PVAc blends exhibited a single glass transition over the entire composition range, indicating that the blends were miscible systems. On the contrary, for the blends with even 10% hydrolyzed PVAc copolymer, the phase separation and double glass transition were observed. With increasing neat PVAc contents, the heat of fusion decreased and the melting peaks shifted to lower temperature. The interaction parameter indicated negative values for up to 10% hydrolyzed samples, but positive values at more than 20% hydrolyzed one. Small angle X-ray scattering analysis revealed that the long period and the amorphous layer thickness increased with PVAc composition, suggesting that a considerable amount of PVAc component located in the interlamellar region. Polarized optical microscopy showed that the texture of spherulites became rougher on increasing the PVAc content. In the case of P(VAc-co-VA) copolymer, the intensity of polarized light decreased significantly, indicating that P(VAc-co-VA) component seemed to be expelled out of the interfibrillar regions. Scanning electron microscopy analysis revealed that the significant phase separation occurred with increasing the degree of hydrolysis. In the case of 70/30 blend of PLA and P(VAc-co-VA) with 30 mol% vinyl alcohol, the P(VAc-co-VA) copolymer formed the regular domains with a size of about 10 μm.  相似文献   

17.
To achieve the feed stock recycling of poly(l-lactide) (PLLA) to l,l-lactide, PLLA composites including alkali earth metal oxides, such as calcium oxide (CaO) and magnesium oxide (MgO), were prepared and the effect of such metal oxides on the thermal degradation was investigated from the viewpoint of selective l,l-lactide formation. Metal oxides both lowered the degradation temperature range of PLLA and completely suppressed the production of oligomers other than lactides. CaO markedly lowered the degradation temperature, but caused some racemization of lactide, especially in a temperature range lower than 250 °C. Interestingly, with MgO racemization was avoided even in the lower temperature range. It is considered that the effect of MgO on the racemization is due to the lower basicity of Mg compared to Ca. At temperatures lower than 270 °C, the pyrolysis of PLLA/MgO (5 wt%) composite occurred smoothly causing unzipping depolymerization, resulting in selective l,l-lactide production. A degradation mechanism was discussed based on the results of kinetic analysis. A practical approach for the selective production of l,l-lactide from PLLA is proposed by using the PLLA/MgO composite.  相似文献   

18.
Polymer blends consisting of linear poly(l-lactide) (PLLA) and different proportions of dendritic PLLA-based copolyesters (hb-PLLA) characterized by different degrees of branching (DB) were obtained in melt. The solid-state properties of poly(l-lactide)s and their blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), atomic force microscopy (AFM) and stress-strain measurements. DSC and DMA methods proved miscibility of PLLA/hb-PLLA blends for the studied composition range. AFM indicated that no phase separation occurs in PLLA/hb-PLLA blends and that PLLA and hb-PLLA cocrystallize in one single lamellae type. The mechanical characteristics of PLLA/hb-PLLA blends deteriorated with an increase of the DB and with changing blend composition. Susceptibility of the blends to biodegradation was studied by measuring the weight loss in two different biodegradation media. PLLA/hb-PLLA blends showed more pronounced hydrophilic character and higher susceptibility to biodegradation with an increase in the degree of branching.  相似文献   

19.
The structure, dispersibility, and crystallinity of poly(3-hydroxybutyrate) (PHB) and poly(l-lactic acid) (PLLA) blends are investigated by using Raman microspectroscopy. Four kinds of PHB/PLLA blends with a PLLA content of 20, 40, 60, and 80 wt% were prepared from chloroform solutions. Differences in the Raman microspectroscopic spectra between the spherulitic and nonspherulitic parts in the blends mainly lie in the CO stretching band and C-O-C and C-C skeletal stretching bands of PHB and PLLA. In addition to such bands, the Raman spectra of spherulitic structure in the blends show a band due to the CH3 asymmetric stretching mode at an unusually high frequency (3009 cm−1), suggesting the existence of a C-H?OC hydrogen bond of PHB in the spherulite. The existence of C-H?OC hydrogen bond is one of the unambiguous evidence for the crystallization of PHB component in the blends. Therefore, it is possible to distinguish Raman bands due to each component in the spectra of blends. Raman spectra of the spherulitic structure in the blends are similar to a Raman spectrum of pure crystalline PHB, while those of the nonspherulitic parts in the blends have each component peak of PHB and PLLA. The present study reveals that the PHB component is crystallized in the blends irrespective of the blend ratio, and that both components are mixed in the nonspherulite parts. The crystalline structure of PHB and the nonspherulitic parts of PLLA in the blends are characterized, respectively, by the unique band of C-H?OC hydrogen bond at 3009 cm−1 and CCO deformation bands near 400 cm−1.  相似文献   

20.
Jian-Bing Zeng 《Polymer》2009,50(5):1178-2282
A novel biodegradable multiblock poly(ester urethane) (PEU), consisting of poly(l-lactic acid) (PLLA) and poly(butylene succinate) (PBS) blocks, has been successfully synthesized via chain-extension reaction of dihydroxyl terminated PLLA (PLLA-OH) and PBS prepolymers (PBS-OH) using toluene-2,4-diisocyanate (TDI) as a chain extender. The chemical structures and molecular weights of PEUs, containing different block lengths and weight fractions of PLLA and PBS, were characterized by 1H NMR and GPC. The effects of the structures on the physical properties of PEUs were systematically studied by means of DSC, TGA, WAXD and tensile testing. The DSC results indicated that PLLA segment was compatible well with PBS segment in amorphous phase and the crystallization of PEU was predominantly caused by PBS segment, which was also confirmed by WAXD. The results of tensile testing showed that the extensibility of PLLA was largely improved by incorporating PBS segment. The PEU can be used as a potential substitute for some petroleum-based thermoplastics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号