首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
针对牛东区块钻探过程中使用的抗高温降滤失剂价格高、增加生产成本的问题,开发了高温性能稳定且成本相对低廉的钻井液用抗高温降滤失剂BZ-HTF。用单因素实验法优选出最优合成参数:单体浓度为30%,反应时间为4 h,反应温度为55℃,引发剂用量为0.10%,AM、AMPS和IA质量比为42∶40∶18,水解度为30%。BZ-HTF抗温达220℃,且性能稳定;在淡水、盐水、复合盐水和饱和盐水基浆中均具有较好的降滤失能力,且对钻井液黏度、切力影响不大;与国外产品Driscal D性能相当,但商品估价只有其四分之一,具有较好的发展前景。  相似文献   

2.
以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、N-乙烯基吡咯烷酮(NVP)、二甲基二烯丙基氯化铵(DMDAAC)为共聚单体,过硫酸铵与亚硫酸氢钠(摩尔比为1∶1)为引发剂,通过自由基水溶液聚合制备了一种抗高温聚合物降滤失剂CQ-1。利用FT-IR、1H NMR及热重分析对CQ-1的结构和热稳定性进行了表征,并通过单因素实验优化了降滤失剂的合成条件。实验结果表明,优化反应条件为:n(AM)∶n(AMPS)∶n(NVP)∶n(DMDAAC)=70∶20∶2∶8,单体总质量分数为20%,引发剂质量分数为0.5%,反应温度55℃,反应时间5 h。在此条件下,CQ-1抗温达240℃,在质量分数为1%时,240℃老化后钻进液中压滤失量为16.2 mL,180℃高温高压滤失量为48.8 mL,优于Driscal D、Dristemp等同类产品。  相似文献   

3.
钻井液用降滤失剂在高温、盐水等复杂环境下失效是深井、超深井钻探开发过程中遇到的突出问题。采用丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基吡咯烷酮(NVP)和N-异丙基丙烯酰胺(NIPAM)为原料,合成了水基钻井液用抗高温降滤失剂JLS200,并对其进行了红外光谱和热重分析,评价了其在钻井液中的性能。结果表明,所合成的抗高温降滤失剂热稳定性好,抗温达200℃,抗盐至饱和;在KCl钻井液中具有良好的配伍性,滤失量低、流变性好,加入1% JLS200后,200℃老化后的API滤失量由12 mL降至3.2 mL,高温高压滤失量由54 mL降至15 mL,高温老化前后钻井液黏度和切力变化不大。该钻井液用降滤失剂具有较好的应用前景。   相似文献   

4.
为了解决改性石墨烯产品单独作为处理剂时加量大、成本高的问题,通过氧化石墨烯(GO)与丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵(DMDAAC)、醋酸乙烯酯(VAC)共聚,制备了氧化石墨烯/聚合物降滤失剂GOJ。借助红外谱图和透射电镜照片做的结构表征表明,GOJ中含有五元环结构和酰胺基、磺酸基、羟基等官能团,相对分子质量在3.63×105左右,微观下为颜色较深的平整的片状结构。性能测定结果表明,新研制的GOJ降滤失性能好,在淡水基浆中加入0.2% GOJ,可使API滤失量降低70%,降滤失能力优于聚合物类降滤失剂PAMS601和JT888等;GOJ具有较强的耐盐性能和优异的高温降滤失能力,耐盐可至饱和,同时在相同加量下,GOJ在180℃、200℃和220℃下的降滤失能力均优于国外产品Driscal-D;氧化石墨烯可以提高GOJ的耐温性能,当GOJ中氧化石墨烯含量为0.32%时,其抗高温能力提升约20℃,并且随着氧化石墨烯含量的增加,高温下的降滤失能力逐渐增强。GOJ可以用作水基钻井液的抗高温抗盐降滤失剂。   相似文献   

5.
通过将4-乙烯基吡啶(VP)、N,N-二甲基丙烯酰胺(DMAA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基己内酰胺(NVCL)以过硫酸铵和亚硫酸氢钠作为氧化还原体系进行自由基共聚反应,合成了抗温达260℃的一种新型降滤失剂(PDANV)。通过设计正交实验确定了最优合成条件为:nDMAA:nAMPS:nNVCL:nVP=6:2:1:1,反应温度为60℃,反应时间为2 h,引发剂质量分数为单体总质量(20%)的0.5%,并利用傅里叶红外光谱(FT-IR)和核磁共振光谱(1H NMR)进一步确定了产物的分子结构。热重分析(TGA)显示PDANV热分解温度在301℃以后,表明其具有良好的热稳定性。同时,将PDANV应用于水基钻井液中,进一步评价其对水基钻井液流变和滤失性能的影响。结果显示,当PDANV加量为2.0%时,水基钻井液的滤失量仅为4.4 mL,260℃老化后滤失量为6.0 mL,高温高压滤失量为24 mL(150℃),同时抗盐至饱和,抗钙20000 mg/L。此外,通过对黏土的粒径分析、SEM分析和Zeta电位分析以及不同浓度的PDANV对黏土颗粒的吸附量的测量,进一步揭示了PDANV在水基钻井液中的降滤失机理。   相似文献   

6.
针对深井钻探中钻井液处理剂抗温抗复合盐性能不足的问题,以丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、N-乙烯基己内酰胺(NVCL)、二甲基二烯丙基氯化铵(DMDAAC)、烯丙醇聚氧乙烯醚(APEG)为单体,以过硫酸钾和亚硫酸氢钠作为氧化还原体系进行自由基共聚反应,合成了一种支链型聚合物降滤失剂(PAANDA)。通过实验优化确定了最优合成条件为:n(AM)∶n(AMPS)∶n(NVCL)∶n(DMDAAC)∶n(APEG)=50∶20∶5∶10∶15,反应温度为50℃,反应时间为4 h,引发剂用量为0.3%。利用傅里叶红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)确定了聚合产物的分子结构,通过热重分析(TGA)测得PAANDA热分解温度大于300℃,表明其具有良好的热稳定性。同时,应用于水基钻井液中,进一步评价PAANDA对水基钻井液流变和滤失性能的影响。结果显示,当PAANDA加量为2.0%时,180℃老化后API滤失量为4.0 mL,高温高压滤失量为22.6 mL(180℃),同时具有抗复合盐能力,抗盐钙能力优于国外同类产品Driscal D。  相似文献   

7.
为了克服水相聚合法产物含量低、烘干过程分子量易增大和高能耗等问题,通过爆聚法利用单体苯乙烯磺酸钠和2-丙烯酰胺-2-甲基丙磺酸分别与丙烯酰胺和二甲基二烯丙基氯化铵合成制备了抗高温抗盐降滤失剂WS-1和WS-2。借助红外光谱(FT-IR)和热重分析(TGA),表征了降滤失剂的分子结构和热稳定性,并且进行了降滤失剂在高温高盐水基钻井液中的流变性和高温高压滤失性能的影响实验。结果表明,具有刚性苯乙烯磺酸钠分子链段的降滤失剂WS-2具有良好的高温稳定性,热分解温度为310℃,降滤失剂WS-2在220℃饱和盐水基钻井液中高温高压滤失量为7.6 mL;具有大分子支链2-丙烯酰胺-2-甲基丙磺酸链段的降滤失剂WS-1热分解温度为270℃,200℃饱和盐水基钻井液中高温高压滤失量为1.6 mL;利用爆聚法合成的降滤失剂WS-1和WS-2均具有良好的抗温抗盐性能。   相似文献   

8.
高温抗盐降滤失剂SPX树脂   总被引:4,自引:1,他引:4  
深井和超深井越来越多,对钻井液抗温抗污染能力的要求也越来越高,这样就需要抗高温抗污染的降滤失剂,根据降滤失剂在使用过程中存在的高温增粘和遇到金属离子污染增粘的问题,从研究降滤失剂的分子结构出发,通过苯氧(基)乙酸与苯酚,甲醛发生缩聚反应同时磺化,合成出磺化苯酚/苯氧(基)乙酸/甲醛树脂(简称SPX树脂),室内实验以在180℃下老化16h后的8%二级钠膨胀土钻井液为研究对象,评价了SPX树脂的抗盐性,抗温性,复配性能,高温高压滤失性能及其对表观粘度的影响等,结果表明,SPX树脂单独使用就具有抗饱和盐,抗高温,非增粘降滤失的作用,而且降滤失效果良好,与SMC和SMK有良好的复配效果,SPX树脂已成功地在中国原油田得到应用。  相似文献   

9.
抗高温苯基阳离子淀粉降滤失剂的合成及性能   总被引:1,自引:1,他引:1  
赵鑫  解金库  张灵霞 《石油化工》2012,41(7):801-805
以环氧氯丙烷、苯基有机胺、羧甲基淀粉(CMS)钠盐等为原料,制备了一种油田钻井液用抗160℃高温的苯基阳离子(PC)淀粉(PCS)降滤失剂。采用FTIR和DTA-TG方法研究了PCS的结构特征和热稳定性。表征结果显示,CMS钠盐的结构上引入了PC,PCS的热分解温度为230℃。考察了PCS的制备条件对PCS降滤失性能的影响。实验结果表明,制备PCS较适宜的反应条件为:m(PC)∶m(CMS)=1∶4,80℃,5 h。利用高温滚子加热炉和常温中压滤失仪等钻井液专用仪器研究了PCS的钻井液性能。在160℃高温滚动16 h后,PCS的常温中压滤失量未增大,仅为8.4 mL。研究结果表明,合成的PCS在160℃高温下具有良好的耐热稳定性,适用于井底温度低于160℃的深井钻探。  相似文献   

10.
降滤失剂作用机理研究——新型降滤失剂的研制   总被引:6,自引:1,他引:5  
总结了降滤失剂的主要作用机理。探讨了丙烯类共聚物和CMC类降滤失剂作用机理和改进原理。通过引入羧酸钙盐并与大分子钙盐复配改进了HPAN类,研制出新型降滤失剂S-1。对CMC类进行了氰乙基化改性。实验结果表明,S-1具有较好的降滤失效果,S-1及改性CMC的耐温性、耐盐和耐Ca~(2 )、Mg~(2 )能力均得到了提高。证实了降滤失剂作用机理的研究结论是确实可信的。  相似文献   

11.
针对深部地层钻井过程中遇到的高温、高矿化度等问题,以AM、AMPS、DMDAAC、DMAM、SAS为聚合单体,采用氧化-还原引发体系进行水溶液共聚,合成了一种五元共聚物降滤失剂。通过优化实验确定最佳合成条件,采用红外光谱和热重分析进行表征,并评价其在钻井液基浆中的性能。实验结果表明,合成的五元共聚物抗温达180℃、抗盐至饱和、抗钙达1.25%;五元共聚物加量为2%时,淡水、饱和盐水及含1.25% CaCl2的基浆经180℃老化16 h后的滤失量分别为6.4、15.6和7.2 mL,均为加2% Driscal的不同基浆滤失量的50%左右。   相似文献   

12.
深井超深井钻进过程中时常出现高温高钙恶劣环境,为了解决由此引发的滤失量过大问题,利用具有抗高温性能的离子液体1-乙烯基-3-乙基咪唑溴盐(VeiBr)、抗钙性能的2-丙烯酰胺基-2-甲基丙磺酸(AMPS)与丙烯酰胺(AM)进行三元共聚,得到了抗高温抗高钙降滤失剂PASV。并对制备PASV的各单体加量进行了优化,最终确定在单体质量比为VeiBr:AM:AMPS=0.53:1:2时,聚合物表现出最佳降滤失行为。室内评价结果表明,PASV抗高温性能优异,初始分解温度达290℃,可满足大多数钻井需要;当钙离子浓度为40 000 mg/L时,加入2% PASV可使基浆在150℃老化前后滤失量分别降为5.2 mL与8.6 mL,显示出良好的抗高钙降滤失效果。机理分析表明,PASV通过牢固的离子键与氢键有效吸附在黏土颗粒上,并能屏蔽Ca2+对黏土的电性中和与絮凝作用,促进黏土颗粒的分散,改善滤饼质量,从而形成致密的滤饼,降低滤失量。   相似文献   

13.
针对常规的淀粉类处理剂抗温能力不足的缺点,以可溶性淀粉为原料,N-羟基琥珀亚酰胺(NHC)为交联剂,采用乳液聚合方法,合成了一种环保型淀粉微球。采用傅立叶红外光谱仪(FT-IR)、扫描电镜(SEM)、热重分析仪、Nanobrook粒度-Zeta电位测试仪等对其进行表征。实验分别评价了,其在淡水基浆、盐水基浆和氯化钙基浆中的降滤失性能,并考察其抗温能力。实验表明,新研制的淀粉微球颗粒大小较均匀,呈圆球状,粒径约为50 nm,热稳定性好;150℃热滚后,加入1%淀粉微球,可分别使4%膨润土基浆、10%盐水基浆、1% CaCl2基浆的API滤失量分别下降70%、55%和60%。且对钻井液流变性影响较小,在降滤失能力、抗温和抗盐方面均优于常规的淀粉类降滤失剂。   相似文献   

14.
采用α-烯烃与苯乙烯乳液聚合的方法,利用乙酸酐与浓硫酸进行适度磺化,得到一种亲白油的高分子量聚合物,这种高聚物经过进一步氢化反应,制得一种油基钻井液降滤失剂FCL,其在白油中以胶体形式出现,不会破坏钻井液性能,同时这种胶体尺寸能封堵泥饼中的孔隙,从而达到降滤失的效果。性能评价结果表明,其最佳加量为1.5%,在180℃、3.5 MPa的高温高压滤失量为8.4 m L,优于国外同类产品phlips D21;在密度低于1.5 g/cm3时,油基降滤失剂FCL对油基钻井液的流变性影响较小,在高密度油基钻井液中,表现出更高的降切性能,可使密度为2.0 g/cm3的油基钻井液动切力维持在15 Pa以下。  相似文献   

15.
针对水基钻井液长期存在黏土膨胀、钻井液滤失量大等问题,以2-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺、甲基丙烯酰胺氧基氯化铵及丙烯酸钾为原料合成了一种抑制型降滤失剂AMSC,用响应面法优化了反应条件,并对AMSC的黏土膨胀抑制性和降滤失性能进行了评价。结果表明:在原料单体质量比为2:1:7:1、温度为50℃、单体浓度为15%、引发剂浓度为0.5%、反应4 h时,AMSC防膨率达到84.76%。在100℃以内,AMSC的抑制性与市场同类型抑制剂相比效果相当,同时该抑制剂对钻井液和水泥浆有较好的降滤失效果。应用添加AMSC的缓速酸体系在遭受钻井液污染的碳酸盐岩区块进行了洗井作业,储层岩心的渗透率恢复率达到87%,提高了产能。   相似文献   

16.
为满足深层油气资源勘探开发钻井施工的需要,提高钻井液的抗温、抗盐抗钙等能力,采用2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、N-乙烯基吡咯烷酮(NVP)和4-羟基苯磺酸钠(SHBS)为单体,辣根过氧化物酶(HRP)为催化剂,采用酶促反应方法,制备了分子主链中具苯环的新型钻井液降滤失剂PAANS,基于相同反应条件合成未含苯环结构的对比聚合物PAAN,并借助核磁共振光谱(1H NMR)进行了结构表征。流变和滤失性能测试结果表明,220℃老化16 h,加量为2.0% PAANS的钻井液的表观黏度、塑性黏度、动切力、常温中压滤失量和高温高压滤失量分别为16.5 mPa·s,10.5 mPa·s、6.0 Pa、12.4 mL和24.0 mL,抗盐可达饱和,具有一定的抗钙能力,性能明显优于PAAN钻井液。通过对吸附量、粒径分布和滤饼微观结构的测试等,揭示了分子主链含有苯环结构的刚性抗高温降滤失剂的作用机理。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号