首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comprehensive canopy characterization of forests is derived from the combined remote sensing signal of imaging spectrometry and large footprint LIDAR. The inversion of two linked physically based Radiative Transfer Models (RTM) provided the platform for synergistically exploiting the specific and independent information dimensions obtained by the two earth observation systems. Due to its measurement principle, LIght Detection And Ranging (LIDAR) is particularly suited to assess the horizontal and vertical canopy structure of forests, while the spectral measurements of imaging spectrometry are specifically rich on information for biophysical and -chemical canopy properties. In the presented approach, the specific information content inherent to the observations of the respective sensor was not only able to complement the canopy characterization, but also helped to solve the ill-posed problem of the RTM inversion. The theoretical feasibility of the proposed earth observation concept has been tested on a synthetic data set generated by a forest growth model for a wide range of forest stands. Robust estimates on forest canopy characteristics were achieved, ranging from maximal tree height, fractional cover (fcover), Leaf Area Index (LAI) to the foliage chlorophyll and water content. The introduction of prior information on the canopy structure derived from large footprint LIDAR observations significantly improved the retrieval performance relative to estimates based solely on spectral information.  相似文献   

2.
合成孔径雷达森林树高和地上生物量估测研究进展   总被引:1,自引:0,他引:1  
微波遥感具有一定的穿透性,能够与森林内部的散射体发生相互作用,从而获得指示森林垂直方向的参数,被认为在森林垂直结构参数估测方面具有很大的潜力。PolSAR、InSAR、PolInSAR、多基线InSAR以及多基线PolInSAR技术的发展进一步拓展了微波遥感在林业中的应用,为森林垂直结构参数估测提供了可行的解决方案。首先总结了森林垂直结构剖面的层析提取方法;然后重点阐述了林下地形、森林树高以及森林地上生物量的微波遥感估测方法;最后就森林垂直结构参数估测研究中存在的问题及其发展趋势进行了分析。
  相似文献   

3.
基于KNN方法的森林蓄积量遥感估计和反演概述   总被引:2,自引:0,他引:2  
K-邻近距离法(KNN)作为一种非参数方法,多适用于非正态分布和密度函数未知的遥感数据分类和参数估计,已被广泛地用于寒带和亚寒带地区的多源林业调查和森林蓄积量估计反演。从KNN方法的基本原理出发,在与传统蓄积量遥感估计方法进行对比的基础上,详细地介绍了KNN方法的特点以及与K|mean方法的区别,总结了KNN法森林蓄积量估计误差的评价模型和度量参数。还对KNN法森林蓄积量遥感估计的国内外研究动态进行了总结,表明了多源信息在KNN法森林蓄积量遥感估计中的重要性,总结出KNN方法进行森林蓄积量遥感估计的两种方法:基于样地点级和基于林分级。最后详细阐述了影响KNN法森林蓄积量估计的众多因素,提出了在低纬度地区利用KNN法对森林蓄积量遥感估计和反演进行系统研究的建议。  相似文献   

4.
森林年龄显著影响其碳汇的变化趋势,降低区域和全球森林碳汇估算的不确定性需要森林年龄分布数据。森林年龄与冠层高度紧密联系,近年来高分辨率森林冠层高度遥感数据不断产生,为森林年龄高分辨率制图创造了条件。但是,基于森林高度遥感数据的温带森林年龄高分辨率制图的可行性尚不清楚。因此,研究基于森林高度遥感数据进行温带森林年龄的估算及制图,对提升区域碳汇动态监测精度、优化森林管理策略及深化温带森林生态系统固碳机制认知具有重要意义。实验以黑龙江省为研究区,利用落叶阔叶林、常绿针叶林、落叶针叶林和混交林共1 821个样地的数据,确定了描述不同森林类型冠层高度随年龄变化的最优生长方程,对样地数据进行了时间订正;随机选择70%的样地观测数据用于模型训练、其余的30%样本用于模型验证,以基于激光雷达数据生成的森林高度和环境因子(包括生长季长度、最高月平均气温和坡度)为自变量,分别采用随机森林(RF)、支持向量机(SVM)和LightGBM方法构建森林年龄估算模型;遴选最优模型,进行研究区2020年森林年龄30 m分辨率制图,分析森林年龄变化特征。结果表明:对于建模样本和验证样本,RF模型的R2最高(0.77)而均方根误差(RMSE)最低(10.20),LightGBM模型次之,SVM模型R2最低(0.63)而RMSE最高(11.85)。采用RF模型估算的森林年龄存在明显的空间差异,大兴安岭地区和伊春市的森林年龄显著高于其它地区,黑河市的森林年龄较低;落叶针叶林的平均年龄最高,其次为常绿针叶林和混交林,落叶阔叶林的平均年龄最低;研究区森林平均年龄为73年,其中75%的森林年龄为40~100年,17%的森林年龄大于100年,8%的森林年龄低于40年。研究表明:将森林高度遥感数据与环境因子结合,采用机器学习方法可以有效估算中国温带森林的年龄,将为区域和全球森林年龄的高分辨率遥感制图提供参考。  相似文献   

5.
针对无源时差定位算法在时差估计误差未知条件下,无法通过计算几何稀释因子准确估计定位误差的问题,提出基于随机森林的无源时差定位误差估计与误差修正算法,通过学习信号特征参数和定位信息与定位误差之间的映射关系,准确估计定位误差并对定位结果进行修正,实现高精度定位;通过匹配时差定位结果与参考源信息制作了测试数据集,并使用该数据集验证了所提算法的有效性;对各特征参数的重要性进行了定量分析,并验证了随机森林模型在时间上的泛化能力;实验结果表明,所提算法实现了在时差估计误差未知条件下对时差定位误差的准确估计,提高无源时差定位的精度,具有较高的工程应用价值。  相似文献   

6.
Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the 2000 Shuttle Radar Topography Mission (SRTM), the National Elevation Dataset (NED), the LANDFIRE project, and the National Land Cover Database (NLCD) 2001, this paper describes a data fusion and modeling strategy for developing the first-ever high-resolution map of canopy height for the conterminous U.S. The approach was tested as part of a prototype study spanning some 62,000 km2 in central Utah (NLCD mapping zone 16). A mapping strategy based on object-oriented image analysis and tree-based regression techniques is employed. Empirical model development is driven by a database of height metrics obtained from an extensive field plot network administered by the USDA Forest Service-Forest Inventory and Analysis (FIA) program. Based on data from 508 FIA field plots, an average absolute height error of 2.1 m (r = 0.88) was achieved for the prototype mapping zone.  相似文献   

7.
To effectively manage forested ecosystems an accurate characterization of species distribution is required. In this study we assess the utility of hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery and small footprint discrete return Light Detection and Ranging (LiDAR) data for mapping 11 tree species in and around the Gulf Islands National Park Reserve, in coastal South-western Canada. Using hyperspectral imagery yielded producer's and user's accuracies for most species ranging from > 52-95.4 and > 63-87.8%, respectively. For species dominated by definable growth stages, pixel-level fusion of hyperspectral imagery with LiDAR-derived height and volumetric canopy profile data increased both producer's (+ 5.1-11.6%) and user's (+ 8.4-18.8%) accuracies. McNemar's tests confirmed that improvements in overall accuracies associated with the inclusion of LiDAR-derived structural information were statistically significant (p < 0.05). This methodology establishes a specific framework for mapping key species with greater detail and accuracy then is possible using conventional approaches (i.e., aerial photograph interpretation), or either technology on its own. Furthermore, in the study area, acquisition and processing costs were lower than a conventional aerial photograph interpretation campaign, making hyperspectral/LiDAR fusion a viable replacement technology.  相似文献   

8.
Canopy height distributions were created from small-footprint airborne laser scanner (ALS) data collected over 40 field sample plots with size 1000 m2 located in mature conifer forest. ALS data were collected with two different instruments, i.e., the ALTM 1233 and ALTM 3100 laser scanners (Optech Inc.). The ALTM 1233 data were acquired at a flying altitude of 1200 m and a pulse repetition frequency (PRF) of 33 kHz. Three different acquisitions were carried out with ALTM 3100, i.e., (1) a flying altitude of 1100 m and a PRF of 50 kHz, (2) a flying altitude of 1100 m and a PRF of 100 kHz, and (3) a flying altitude of 2000 m and a PRF of 50 kHz. Height percentiles, mean and maximum height values, coefficients of variation of the heights, and canopy density at different height intervals above the ground were derived from the four different ALS datasets and for single + first and last echoes of the ALS data separately. The ALS-derived height- and density variables were assessed in pair-wise comparisons to evaluate the effects of (a) instrument, (b) flying altitude, and (c) PRF. A systematic shift in height values of up to 0.3 m between sensors when the first echoes were compared was demonstrated. Also the density-related variables differed significantly between the two instruments. Comparisons of flying altitudes and PRFs revealed upwards shifted canopy height distributions for the highest flying altitude (2000 m) and the lowest PRF (50 kHz). The distribution of echoes on different echo categories, i.e., single and multiple (first and last) echoes, differed significantly between acquisitions. The proportion of multiple echoes decreased with increasing flying altitude and PRF. Different echo categories have different properties since it is likely that single echoes tend to occur in the densest parts of the tree crowns, i.e., near the apex where the concentration of biological matter is highest and distance to the ground is largest. To assess the influence of instrument, flying altitude, and PRF on biophysical properties derived from ALS data, regression analysis was carried out to relate ALS-derived metrics to mean tree height (hL) and timber volume (V). Cross validation revealed only minor differences in precision for the different ALS acquisitions, but systematic differences between acquisitions of up to 2.5% for hL and 10.7% for V were found when comparing data from different acquisitions.  相似文献   

9.
A study was conducted to determine the feasibility of obtaining estimates of vegetation canopy height from digital elevation data collected during the 2000 Shuttle Radar Topography Mission (SRTM). The SRTM sensor mapped 80% of the Earth's land mass with a C-band Interferometric Synthetic Aperture Radar (InSAR) instrument, producing the most complete digital surface map of Earth. Due to the relatively short wavelength (5.6 cm) of the SRTM instrument, the majority of incoming electromagnetic energy is reflected by scatterers located within the vegetation canopy at heights well above the “bald-Earth” surface. Interferometric SAR theory provides a basis for properly identifying and accounting for the dependence of this scattering phase center height on both instrument and target characteristics, including relative and absolute vertical error and vegetation structural attributes.An investigation to quantify the magnitude of the vertical error component was conducted using SRTM data from two vegetation-free areas in Iowa and North Dakota, revealing absolute errors of −4.0 and −1.1 m, respectively. It was also shown that the relative vertical error due to phase noise can be reduced significantly through sample averaging. The relative error range for the Iowa site was reduced from 13 to 4 m and for the North Dakota site from 7 to 3 m after averaging of 50 samples. Following error reduction, it was demonstrated that the SRTM elevation data can be successfully correlated via linear regression models with ground-measured canopy heights acquired during the general mission timeframe from test sites located in Georgia and California. Prior to outlier removal and phase noise reduction, initial adjusted r2 values for the Georgia and California sites were 0.15 and 0.20, respectively. Following outlier analysis and averaging of at least 20 SRTM pixels per observation, adjusted r2 values for the Georgia and California sites improved to 0.79 (rmse=1.1 m) and 0.75 (rmse=4.5 m), respectively. An independent validation of a novel bin-based modeling strategy designed for reducing phase noise in sample plot data confirmed both the robustness of the California model (adjusted r2=0.74) as well as the capacity of the binning strategy to produce stable models suitable for inversion (validated rmse=4.1 m). The results suggest that a minimum mapping unit of approximately 1.8 ha is appropriate for SRTM-based vegetation canopy height mapping.  相似文献   

10.
Mean stand height is an important parameter for forest volume and biomass estimation in support of monitoring and management activities. Information on mean stand height is typically obtained through the manual interpretation of aerial photography, often supplemented by the collection of field calibration data. In remote areas where forest management practices may not be spatially exhaustive or where it is difficult to acquire aerial photography, alternate approaches for estimating stand height are required. One approach is to use very high spatial resolution (VHSR) satellite imagery (pixels sided less than 1 m) as a surrogate for air photos. In this research we demonstrate an approach for modelling mean stand height at four sites in the Yukon Territory, Canada, from QuickBird panchromatic imagery. An object-based approach was used to generate homogenous segments from the imagery (analogous to manually delineated forest stands) and an algorithm was used to automatically delineate individual tree crowns within the segments. A regression tree was used to predict mean stand height from stand-level metrics generated from the image grey-levels and within-stand objects relating individual tree crown characteristics. Heights were manually interpreted from the QuickBird imagery and divided into separate sets of calibration and validation data. The effects of calibration data set size and the input metrics used on the regression tree results were also assessed. The approach resulted in a model with a significant R2 of 0.53 and an RMSE of 2.84 m. In addition, 84.6% of the stand height estimates were within the acceptable error for photo interpreted heights, as specified by the forest inventory standards of British Columbia. Furthermore, residual errors from the model were smallest for the stands that had larger mean heights (i.e., > 20 m), which aids in reducing error in subsequent estimates of biomass or volume (since stands with larger trees contribute more to overall estimates of volume or biomass). Estimated and manually interpreted heights were reclassified into 5-metre height classes (a schema frequently used for forest analysis and modelling applications) and compared; classes corresponded in 54% of stands assessed, and all stands had an estimated height class that was within ± 1 class of their actual class. This study demonstrates the capacity of VHSR panchromatic imagery (in this case QuickBird) for generating useful estimates of mean stand heights in unmonitored, remote, or inaccessible forest areas.  相似文献   

11.
近年来ICESat|GLAS波形数据被广泛地应用于森林生态参数的估算。为了研究大光斑激光雷达数据在复杂地形区域估算森林蓄积量方面的能力,以云南省香格里拉县为研究区域,将GLA01数据处理后得到的平均树高与实测树高及坡度进行对比,探究了坡度对GLAS数据估算平均树高的影响,同时将其与平均树高、光斑范围内森林蓄积量建立关系,初步研究三者之间的关系。结果表明,坡度会降低大光斑激光雷达数据估算森林植被高度的精度,但GLAS数据估算出的树高与实测的平均树高、蓄积量数据仍有较好的相关性,这说明利用GLAS数据估算森林蓄积量有较大的潜力。  相似文献   

12.
In this study retrievals of forest canopy height were obtained through adjustment of a simple geometric-optical (GO) model against red band surface bidirectional reflectance estimates from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped to a 250 m grid. The soil-understory background contribution was partly isolated prior to inversion using regression relationships with the isotropic, geometric, and volume scattering kernel weights of a Li-Ross kernel-driven bidirectional reflectance distribution function (BRDF) model. The height retrievals were assessed using discrete return lidar data acquired over sites in Colorado as part of the Cold Land Processes Experiment (CLPX) and used with fractional crown cover retrievals to obtain aboveground woody biomass estimates. For all model runs with reasonable backgrounds and initial b/r (vertical to horizontal crown radii) values < 2.0, root mean square error (RMSE) distributions were centered between 2.5 and 3.7 m while R2 distributions were centered between 0.4 and 0.7. The MISR/GO aboveground biomass estimates predicted via regression on fractional cover and mean canopy height for the CLPX sites showed good agreement with U.S. Forest Service Interior West map data (adjusted R2 = 0.84). The implication is that multiangle sensors such as MISR can provide spatially contiguous retrievals of forest canopy height, cover, and aboveground woody biomass that are potentially useful in mapping distributions of aboveground carbon stocks, tracking disturbance, and in initializing, constraining, and validating ecosystem models. This is important because the MISR record is spatially comprehensive and extends back to the year 2000 and the launch of the NASA Earth Observing System (EOS) Terra satellite; it might thus provide a ~ 10-year baseline record that would enhance exploitation of data from the NASA Deformation, Ecosystem Structure and Dynamics of Ice (DESDynI) mission, as well as furthering realization of synergies with active instruments.  相似文献   

13.
The use of airborne laser scanning systems (lidar) to describe forest structure has increased dramatically since height profiling experiments nearly 30 years ago. The analyses in most studies employ a suite of frequency-based metrics calculated from the lidar height data, which are systematically eliminated from a full model using stepwise multiple linear regression. The resulting models often include highly correlated predictors with little physical justification for model formulation. We propose a method to aggregate discrete lidar height and intensity measurements into larger footprints to create “pseudo-waves”. Specifically, the returns are first sorted into height bins, sliced into narrow discrete elements, and finally smoothed using a spline function. The resulting “pseudo-waves” have many of the same characteristics of traditional waveform lidar data. We compared our method to a traditional frequency-based method to estimate tree height, canopy structure, stem density, and stand biomass in coniferous and deciduous stands in northern Wisconsin (USA). We found that the pseudo-wave approach had strong correlations for nearly all tree measurements including height (cross validated adjusted R2 (R2cv) = 0.82, RMSEcv = 2.09 m), mean stem diameter (R2cv = 0.64, RMSEcv = 6.15 cm), total aboveground biomass (R2cv = 0.74, RMSEcv = 74.03 kg ha− 1), and canopy coverage (R2cv = 0.79, RMSEcv = 5%). Moreover, the type of wave (derived from height and intensity or from height alone) had little effect on model formulation and fit. When wave-based and frequency-based models were compared, fit and mean square error were comparable, leading us to conclude that the pseudo-wave approach is a viable alternative because it has 1) an increased breadth of available metrics; 2) the potential to establish new meaningful metrics that capture unique patterns within the waves; 3) the ability to explain metric selection based on the physical structure of forests; and 4) lower correlation among independent variables.  相似文献   

14.
快速准确获取森林结构参数对森林资源调查管理及全球碳汇研究具有重要意义。以祁连山东、中部青海云杉林为研究对象,利用16个无人机激光雷达(LiDAR)点云数据、正射影像数据结合实地样方观测数据,提取样方内青海云杉的单木树高并准确验证树木分割精度;结合实测数据和地形数据,依据统计指标验证提取树高精度并分析原因;基于点云数据提取的各样方树高分析祁连山青海云杉冠层高度在空间上的变化。结果表明:在祁连山山地森林,冠层高度平均值估算精度最高,R2为0.93,RMSE为1.39 m(P<0.05);地形影响基于点云数据的树高提取,坡度较小的青海云杉树高提取效果更好;从东到西,青海云杉平均树高呈下降趋势;随着海拔高度上升,青海云杉的平均树高先上升后下降,这与祁连山东西水热条件差异和不同海拔树木年龄分布有关。  相似文献   

15.
Forest biomass mapping from lidar and radar synergies   总被引:2,自引:0,他引:2  
The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed.In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R2 of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and was used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar-SAR synergy was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the potential of the combined use of lidar samples and radar imagery for forest biomass mapping. Various issues regarding lidar/radar data synergies for biomass mapping are discussed in the paper.  相似文献   

16.
林分平均高度是生态系统模型重要的输入参数之一,与生物量估算与碳循环研究高度相关。通过系统回顾林分平均高度研究的发展历史和最新进展,总结了不同传感器林分平均高度(SAR树高与LiDAR冠层高度)研究的主要模型和方法,通过单一传感器技术进行林分平均高度研究的内在特征的不同,分析了多传感器的区域林分平均高度联合反演方法的优劣性,并从科学发展趋势和社会需求出发,认识目前存在的主要问题与难点及未来面临的挑战和机遇,为今后更好地进行森林垂直结构和全球碳循环研究提供思路和借鉴。  相似文献   

17.
In this study we use the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product to develop multivariate linear regression models that estimate canopy heights over study sites at Howland Forest, Maine, Harvard Forest, Massachusetts and La Selva Forest, Costa Rica using (1) directional escape probabilities that are spectrally independent and (2) the directional spectral reflectances used to derive the directional escape probabilities. These measures of canopy architecture are compared with canopy height information retrieved from the airborne Laser Vegetation Imaging Sensor (LVIS). Both the escape probability and the directional reflectance approaches achieve good results, with correlation coefficients in the range 0.54-0.82, although escape probability results are usually slightly better. This suggests that MODIS 500 m BRDF data can be used to extrapolate canopy heights observed by widely-spaced satellite LIDAR swaths to larger areas, thus providing wide-area coverage of canopy height.  相似文献   

18.
The Shuttle Radar Topography Mission distinguished itself as the first near-global spaceborne mission to demonstrate direct sensitivity to vertical vegetation structure. Whether this sensitivity is viewed as exploitable signal or unwanted bias, a great deal of interest exists in retrieving vegetation canopy height information from the SRTM data. This study presents a comprehensive application-specific assessment of SRTM data quality, focusing on the characterization and mitigation of two primary sources of relative vertical error: uncompensated Shuttle mast motion and random phase noise. The assessment spans four test sites located in the upper Midwestern United States and examines the dependence of data quality on both frequency, i.e., C-band vs. X-band, and the number of acquired datatakes. The results indicate that the quality of SRTM data may be higher than previously thought. Novel mitigation strategies include a knowledge-based approach to sample averaging, which has the potential to reduce phase noise error by 43 to 80%. The strategies presented here are being implemented as part of an ongoing effort to produce regional- to continental-scale estimates of vegetation canopy height within the conterminous U.S.  相似文献   

19.
The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass > 1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies.  相似文献   

20.
Field data describing the height growth of trees or stands over several decades are very scarce. Consequently, our capacity of analyzing forest dynamics over large areas and long periods of time is somewhat limited. This study proposes a new method for retrospectively reconstructing plot-wise average dominant tree height based on a time series of high-resolution canopy height maps, termed canopy height models (CHMs). The absolute elevation of the canopy surface, or digital surface model (DSM), was first reconstructed by applying image-matching techniques to stereo-pairs of aerial photographs acquired in 1945, 1965, 1983, and 2003. The historical CHMs were then created by subtracting the bare earth elevation provided from a recent lidar survey from the DSMs. A method for estimating average dominant tree height from these historical CHMs was developed and calibrated for each photographic year. The accuracy of the resulting remote sensing height estimates was compared to age-height data reconstructed based on dendrometric measurements. The height bias of the remote sensing estimates relative to the verification data ranged from 0.52 m to 1.55 m (1.16 m on average). The corresponding root-mean-square errors varied between 1.49 m and 2.88 m (2.03 m average). Despite being slightly less accurate than historical field data, the quality of the remote sensing estimates is sufficient for many types of forest dynamics studies. The procedures for implementing this method, with the exception of the calibration phase, are entirely automated such that forest height growth curves can be reconstructed and mapped over large areas for which recent lidar data and historical photographs exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号