共查询到20条相似文献,搜索用时 93 毫秒
1.
CuO催化臭氧氧化深度处理垃圾渗滤液的研究 总被引:2,自引:1,他引:2
采用粉末CuO作为催化剂,对生化处理后的低浓度垃圾渗滤液进行催化臭氧氧化深度处理.探讨了反应时间、催化剂投量、温度、pH、起始CODCr及氯离子含量对渗滤液有机污染物去除的影响.在进水COD.为350 mg/L,色度为1 000 PCU的条件下,氧化反应120 min后CODCr、TOC及UV254的去除率能够达到70%~80%,色度的去除率几乎达到100%.试验结果得出,在常温条件下,CuO催化臭氧氧化法深度处理低浓度垃圾渗滤液的最佳反应时间为120 min,CuO最佳投量为0.5 s/L,反应最佳pH为6~8. 相似文献
2.
3.
垃圾渗滤液中有机物和氨氮浓度高,难生物降解的大分子有机物多,可生化性差,C/N比低。本工程采用“水解酸化+AOAO+两级臭氧催化氧化-BAF”组合工艺处理垃圾渗滤液,出水执行《生活垃圾填埋场污染控制标准》(GB 16889-2008)表2标准(以下简称“表2标准”)。运行结果表明,该系统可操作性强,运行稳定且成本低,污染物去除率高,出水CODCr<100 mg/L、氨氮<25 mg/L、总氮<40 mg/L,水质完全满足排放要求,值得推广。 相似文献
4.
5.
采用臭氧催化氧化法降解反渗透浓水的化学需氧量(COD),对比了几种催化剂的活性,考察了p H值、臭氧浓度和反应空速对COD去除率的影响。结果表明,催化剂活性由高到低的顺序为Cu-Ce/ACNTCu-Ce/ACCu-Ce/Al_2O_3Cu-Ce/TL。与单独臭氧氧化相比,臭氧催化氧化法COD去除率可增加45.2%。适宜的pH、臭氧浓度和低反应空速有利于提高COD去除率。Cu-Ce/ACNT臭氧催化氧化反应的COD平均去除率达到78.6%,出水COD均满足处理要求,并在30 d内活性没有明显的下降,在废水处理领域有广阔的应用前景。 相似文献
6.
8.
采用惠州石化含盐二级生化出水和深度处理出水作为原水分别进行深度处理。通过调整不同的停留时间、臭氧投加浓度进行试验。数据显示,惠州石化含盐二级生化出水经臭氧"接触氧化+催化氧化"处理后,COD去除率可达到39%~50%;采用含盐深度处理出水再次进行处理后,COD总去除率可达到40.72%。证明提高臭氧投加量和延长停留时间,含盐污水COD可以进一步降低。 相似文献
9.
10.
11.
12.
13.
14.
15.
17.
垃圾渗滤液催化电解氧化深度处理的研究 总被引:3,自引:0,他引:3
利用催化电解氧化技术对垃圾渗滤液生物处理出水进行了小试和中试研究.研究了影响电解处理效果的因素.并重点考察了达到排放标准所需要的电耗。结果表明:影响电解处理效果的因素主要包括进水的COD和NH3-N浓度、电流密度、极水比、电解时间等。试验结果显示,采用板状RuO2-IrO2-TiO2/Ti电极,电极间距为10mm.进水COD为500mg/L左右.NH3-N为15mg/L左右。将COD降至二级排放标准,最佳的电流密度为2.81A/dm^2.电解耗时仅需15min左右.电耗为6.82kWh/T。将COD降至一级排放标准.所需电解时间约82min,电耗为37.33kWh/T。 相似文献
18.
19.
垃圾渗滤液经过常规的生化处理后难以达到国家的排放标准,高级氧化技术作为深度处理工艺之一日益成为处理的重要方法。目前,垃圾渗滤液深度处理的高级氧化技术主要有臭氧氧化法、电催化氧化法、光催化氧化法、Fenton氧化法、过硫酸盐氧化法、超声氧化法等几种方法。系统阐述了这些高级氧化法的机理以及国内外研究者们的研究成果,比较了各高级氧化技术的优缺点,并对这些技术的研究方向做了展望。最后,介绍了高级氧化技术之间的一些优化组合工艺在垃圾渗滤液深度处理中的研究成果,这些工艺互相协同,在技术和经济上是切实可行的,有望成为垃圾渗滤液深度处理技术工程化的发展方向之一。 相似文献
20.
微波强化Fenton氧化法处理垃圾渗滤液研究进展 总被引:3,自引:0,他引:3
对目前微波强化Fenton法处理垃圾渗滤液的研究结果进行了综述,并对结果进行了分析比较。在微波Fenton法处理垃圾渗滤液的过程中,微波的热效应是起主要作用。影响垃圾渗滤液处理效果因素有pH值、微波辐射功率和时间及Fenton试剂,对不同垃圾渗滤液进行处理,各因素的影响有差异,本文对造成这些差异的原因进行了初步探讨。结合当前研究成果,探讨了微波强化Fenton氧化法可能的应用。 相似文献