首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
类矩形盾构隧道开挖使土体以不均匀沉降形式作用于地下管线,导致管线产生纵向变形、破坏。针对类矩形盾构隧道施工,采用室内缩尺寸模型试验,综合考虑管隧相对位置、管线埋深及土体损失率3个影响因素,研究类矩形盾构隧道在砂土地层中施工,地下管线沉降、变形及地表沉降的规律变化。研究结果表明:管隧垂直工况时,管线竖向位移曲线呈高斯分布,竖线位移反弯点出现在隧道轴线附近处,管线弯矩呈"M"型分布,最大竖向位移及弯矩位于隧道轴线正上方;管隧斜交工况所受影响比管隧垂直工况影响更大;管线埋深越大,管线受影响程度越深;管线竖向位移随土体损失率减小相应降低,隧道轴线正上方管线竖向位移与管线最大正弯矩及两个较大负弯矩减小幅度较大,管线两端受影响程度较小;地表沉降受土体损失影响较大,沉降值比管线大。  相似文献   

2.
通过对软土地区新建轨道交通隧道下穿某既有线工程施工监测过程及相关数据的详细分析研究,发现受盾构施工影响既有线结构竖向位移变化规律与土体地表竖向位移变化规律相似,地表、既有隧道结构施工后沉降变形量显著大于推进过程中变形量,表明盾构穿越对既有线的风险影响范围主要在隧道投影区域.同时,研究分析上述结果产生的可能原因,并针对控...  相似文献   

3.
盾构隧道施工会对周围土体产生扰动,当土体沉降和变形过大时,会对邻近地下管线产生危害。采用统一土体移动模型解计算盾构隧道施工引起的土体自由位移场,通过能量方法建立变分控制方程,得到盾构隧道施工引起地下管线竖向位移的计算方法。为了预测盾构施工地铁隧道时隧道地层变形情况,采用FLAC3D岩土模拟软件对地铁穿越富水砂卵石地层进行模拟分析,可对类似工程有所助益。  相似文献   

4.
盾构推进引起地表变形及深层土体水平位移分析   总被引:1,自引:0,他引:1  
 基于弹性力学Mindlin解,考虑刀盘挤土效应产生的切口正面附加压力、软土地层中具有软化特性且不均匀分布的盾壳侧摩阻力、及同步注浆压力引起的地层位移,结合土体损失引起的地层位移,得到盾构施工期间地表竖向位移及深层土体水平位移解答。经与3个工程实测结果进行对比,该方法计算结果与实测数据较为吻合,基本可以反映盾构施工引起的地层位移变化规律。分析结果表明:盾构前方土体在盾构施工作用下产生隆起,其形态基本接近正态分布曲线;较大的注浆压力亦引致地表土体隆起;深层土体在盾构施工期间受到挤压,向远离隧道轴线运动,其最大水平位移量在盾构轴线附近。  相似文献   

5.
为研究大直径泥水盾构施工对粉质黏土地层变形的影响,以武汉市地铁29号线工程为依托,借助水准仪和自主设计可伸缩沉降板监测地表和深部土体竖向位移。监测结果表明,在盾构机掘进过程中,地表表现为先沉降后隆起再沉降的变化规律;深部土体竖向位移具有与地表类似的变化规律,当盾构刀盘脱离监测断面 23. 5m时,最大隆起达15mm。  相似文献   

6.
罗明秋 《市政技术》2019,(2):133-135
以江苏省南京市宁和城际TA03标段铁—春盾构区间隧道为例,结合现场实测地表沉降数据,对南京典型地层下盾构施工引起的地表沉降规律进行了分析。结果表明,地表沉降受地层稳定性影响较大,硬质地层占比越高,地层稳定性越好,盾构施工产生的地表沉降值越小;地层稳定性越高,纵向地表由隆起变形转为沉降变形的速度越慢。  相似文献   

7.
通过上海软土地层中3个大截面矩形顶管施工实例结果分析,发现矩形顶管推进引起地表变形具有一般规律性。笔者对地表隆沉及局部变形的机理进行了深入分析,并对变形控制措施进行了详细探讨。变形一般规律:地表隆起越大,则相应地表沉降量越小;最大沉降均发生在距始发井5~10 m的范围;当顶管机经过测点后推进约25 m左右时,监测断面上各测点的沉降值已趋于稳定。掘进面的地表隆起主要受顶进推力影响,地表沉降则受土体损失控制。顶管中段的土体损失沉降比较稳定,可通过调整掘进面上方的隆起与最终沉降的量值占比来达到最优变形控制目的。  相似文献   

8.
朝上掘进盾构机从水平隧道始发向上掘进过程中,会导致周边土体变形。采用三维有限元模拟软件MIDAS GTS NX对过程进行建模,利用网格激活钝化、改变网格参数与属性的方法,模拟朝上掘进盾构施工的实际过程,得到隧道周边土体的变形规律,研究不同竖向隧道长度、不同朝上盾构掘进速度等因素对土体变形造成的影响。研究结果表明,在朝上掘进盾构的掘进过程中,地表土体离竖井中心点距离越近,其沉降呈现出先增加后减少,甚至隆起的情况,水平位移相比于竖向位移改变量较小;竖向隧道长度越长,土体及水平隧道因盾构向上掘进产生的扰动就越大;而施工时朝上盾构掘进速度越慢,对于土体的竖向扰动影响就越小。  相似文献   

9.
目前针对软土地层盾构施工诱发周围土体变形影响的研究一般是基于瞬时开挖工况,较少考虑黏弹性土体的流变特性,也较少考虑地表堆载给盾构隧道施工所带来的影响。从地基黏弹性角度出发,引入隧道洞周的椭圆化收敛变形模式,采用复变函数理论并运用Laplace变换技术,提出了地表堆载作用下盾构隧道开挖引起的周围土体位移和应力的时域解。依托相关工程监测数据与简化时域解对比,得到了较好的一致性。研究结果表明:所得出的时域解能较好地反映地表堆载作用下盾构隧道开挖对周围土体位移场的影响,以及地层变形随时间的发展趋势。在地表堆载影响下,随着时间推移,开挖引起的地层变形不断增加,沉降速率则呈现出逐渐衰弱直至为零规律,而堆载突变导致其地表沉降值尤其沉降速率变化显著。研究成果对黏性地层密集堆载群范围内的隧道施工控制具有一定理论指导意义。  相似文献   

10.
为了探明地表超载对软、硬地层中既有盾构隧道的影响,通过隧道与地层相互作用的模型试验,对地表超载作用下隧道变形、土压力及土体沉降进行了量测。试验结果分析表明,相同的地表超载作用下,软土地层中的隧道横椭圆变形要大于硬土地层中的隧道横椭圆变形。当隧道穿越土层的土体压缩模量较小时,地表超载作用下隧道上覆土层表现为被动土拱土压力;当隧道穿越土层的土体压缩模量较大时则为主动土拱土压力。隧道竖向收敛变形与其穿越土层竖向压缩量之间的关系分析表明,隧道横断面变形刚度与穿越土层的土体压缩模量共同决定隧道上覆土层的沉降状态,从而决定了地表超载对既有盾构隧道的影响。研究成果定性地揭示了软土地区既有盾构隧道在地表超载作用下极易发生变形超限的机理。  相似文献   

11.
基于Mindlin位移解和随机介质理论,考虑正面附加推力、盾壳与土体之间的摩擦力、附加注浆压力和土体损失,研究类矩形盾构施工引起的土体竖向位移及各因素的影响。研究土体损失的过程中引入了开挖面收敛模式参数α和纵向损失率修正公式。研究结果表明:考虑多因素的土体竖向位移预测值与实测值较吻合,能反映出纵向地表沉降曲线在开挖面附近及后方地表出现隆起和沉降逐渐发展的过程;随着深度的增加土体沉降值增大;隧道轴线两侧的土体沉降增量要大于轴线正上方,沉降曲线呈W型。该方法也可以用于分析土仓压力不均的工况,此时开挖面前方的沉降曲线不再对称;正面附加压力减小,开挖面前方地表沉降值增加,反之,沉降值减小。  相似文献   

12.
分析了成都砂卵石地层工程地质和水文地质条件,通过大型三轴试验对砂卵石层力学特性进行了研究。针对砂卵石层粘聚力低、离散性强的特点,选用颗粒离散元法作为数值计算工具,通过对大型三轴试验的数值模拟,对砂卵石层的细观参数进行了标定。研究了支护压力对开挖面变形、地表沉降、开挖面的最大位移和土层应力的影响。研究结果表明:1)开挖面土体破坏形状和砂土的离心试验模型相符;2)当支护压力较小时,开挖面前方土体颗粒接触力很低,颗粒流动趋势明显,因此容易引起超挖,从而导致盾构施工后形成地层中的空洞;3)开挖面前的上方土体成拱作用明显,即使土层内部形成空洞也不会立刻引起地面塌陷,这是目前成都盾构施工引发地面滞后沉降的主要原因。  相似文献   

13.
 采用Ф800 mm模型盾构开展室内掘进试验以研究土压盾构掘进对上软下硬地层的扰动特征,试验充分考虑土压盾构动态施工全过程的影响。建立与室内掘进试验对应的离散元模型定量分析软土超挖现象并挖掘其他地层扰动信息。研究结果表明:土压盾构在硬岩地层中掘进时地表沉降曲面呈现向软土侧展开的“扇面”状;进入上软下硬地层后地表沉降值与范围均急剧增加,沉降曲面呈现自上而下逐渐收缩的“漏斗”状,硬岩侧收缩速度快于软土侧;上软下硬地层地表位移小于均质软土地层,而地中沉降显著大于后者;上软下硬地层地中沉降槽宽度参数沿深度方向呈指数增加,硬岩占断面比例越小,地中沉降槽宽度参数越大。相同埋深条件下,上软下硬地层地中沉降槽宽度参数小于均质软土地层。硬岩占断面比例越大,渣土中砂土所占比例与相应理论值差异越明显。地表水平位移在竖向沉降槽曲线反弯点处最大。研究可为土压盾构在上软下硬地层施工提供参考。  相似文献   

14.
针对上海软土地区深埋盾构开挖所引起的土压力时效性发展规律,选取4倍直径埋深盾构,布设土压力全断面长期监测点,获取盾构开挖阶段及后期固结蠕变阶段的土压力数据,以得到深部地层的土压时效变化规律.通过现场试验可得,盾构开挖所采取的土仓压力按照理论静止土压力取值时,刀盘周围会形成半径为1~1.5D的被动土拱效应作用区域,土拱范...  相似文献   

15.
 采用自主研制的? 800 mm土压平衡盾构掘进试验系统,对砂卵石与砂土地层开展室内缩尺掘进试验研究,以分析土压平衡盾构掘进对地层的扰动特征;同时,针对室内缩尺掘进试验,开展离散元数值模拟以分析盾构掘进开挖面的变形与破坏形态。研究表明:砂土地层地表沉降曲面自上而下呈现逐渐收缩的“圆形漏斗”状,砂卵石地层地表沉降曲面自上而下呈现逐渐收缩的“V型河谷”状;砂卵石地层地表横断面沉降槽宽度系数相比砂土地层要小;2种地层地中沉降槽宽度参数都随地中深度比的增加而呈线性增大,相同深度比条件下砂卵石地层地中沉降槽宽度参数要小于砂土地层;砂土地层沉降时间效应曲线较为渐进和连续,而砂卵石地层则呈现突变性;2种地层开挖面破坏形态均为烟囱状,但砂卵石地层的开挖影响范围无论在横向还是纵向上都要小于砂土地层。  相似文献   

16.
隧道断面的增大致使盾构施工的风险增大,尤其是高水压砂性土层,大直径浅埋隧道盾构对周边岩土体的扰动以及土层变形的影响是目前需要研究的新课题。本文以武汉地铁7号线大直径越江隧道段为工程背景,建立了大直径浅埋隧道盾构掘进室内缩尺试验模型,采用螺旋出土盾构设备(包含螺旋杆、螺旋出土器及套筒),以恒定的推进速率进行了隧道掘进,并且对地表沉降进行了监控。同时,本文建立了同尺寸的浅埋隧道盾构掘进离散元模型,对盾构掘进过程中地表沉降、开挖面前方土层中颗粒配位数以及黏结破裂区域进行了分析研究,并与室内试验结果进行了对比分析。结果表明:地表竖向位移与室内试验结果吻合度较高,盾构掘进地表各点处的沉降均随着掘进距离的增大而增大;盾构掘进影响区域主要分布在隧道顶部至地表、一定范围内的周边土体以及开挖面前方一定范围内的盾构区域;颗粒接触点处的黏结破裂区域主要分布在盾构区域和隧道顶部区域。  相似文献   

17.
以郑州地铁工程为背景,研究盾构隧道下穿既有隧道引起的地表变形。基于地层沉降经验公式——Peck公式的预测结果,结合施工现场监测数据分析结果,将两者进行对比,从而得到地表沉降监测断面的累计沉降曲线,与Peck经验公式计算得到的沉降槽曲线变化规律相同,符合地表沉降变形规律,即微小沉降阶段、急剧沉降阶段、缓慢沉降阶段、沉降稳定阶段。可以通过该理论预测更好地控制隧道沉降和收敛变形,保持均衡、连续的盾构推进,减少因盾构停顿造成的地面、隧道沉降。  相似文献   

18.
为了确定软土地层中隧道加固的合理范围,保证盾构隧道在软土地层施工的安全性,以珠海横琴杧洲隧道工程为背景,开展了软土地层浅埋超大直径盾构隧道开挖面破坏机理及合理加固范围的研究。基于三维有限元分析,研究了加固范围对开挖面主、被动破坏形式及地表变形的影响。结果表明:随着加固土层厚度t的增加,地层受开挖扰动的区域逐渐缩小,地层显著位移区域由地表收缩至开挖面前方土体,破坏形式由整体破坏转为局部破坏,t=0.20D(D为隧道直径)相比t=0时地表沉降(隆起量)减少70%~80%,地表最大变形点沿纵向的位置基本一致,均在开挖面前方约0.5D; 随着t的增加,开挖面支护压力可调节范围增加,t=0.20D时相比t=0时可调节范围增加了32.5%,这使得实际施工过程更有利于维持开挖面的稳定性; 结合经济及加固效果两方面考虑,实际工程进行地层加固时取加固土层厚度t=0.20D为较合理的方案。  相似文献   

19.
盾构施工引起地面长期沉降的理论计算研究   总被引:4,自引:1,他引:3  
 对盾构施工引起的隧道轴线上方地面工后沉降进行研究,结果表明,土体开挖卸荷引起应力释放,产生初始超孔隙水压力,其分布呈三角形。假定衬砌不排水、土体为单面排水、压缩层厚度为隧道覆土厚度,采用太沙基一维固结理论,得到地面工后固结沉降的理论计算公式。假定地面长期沉降主要由施工期间沉降和工后固结沉降组成,进而得到地面长期沉降的理论计算公式。算例分析结果表明:该方法的预测值与实测值非常吻合;上海软土地区盾构隧道施工引起的地面长期沉降相当显著,最终地面沉降量在80 mm以上,固结沉降占总沉降量的80%~90%;按最小覆土深度5 m计算,需要2 a以上地面沉降才能最终稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号