共查询到20条相似文献,搜索用时 46 毫秒
1.
传统的独立分量分析算法多依赖于对峭度值的正确计算,然而峭度值的变化对随机大样本的干扰非常敏感,因此往往导致分离结果的不正确.针对于此文中提出了一种结合中值滤波技术的独立分量分析算法,实验表明,该算法能有效地克服随机大样本信号的干扰,并获得较好的盲源分离结果. 相似文献
2.
3.
基于盲源分离的单通道语音信号增强 总被引:1,自引:0,他引:1
在运用基于独立分量分析(ICA)的盲源分离法进行语音增强时,要求观测信号(含噪语音)的个数不少于源信号(纯净语音和噪声)的个数.由于含噪语音通常是单通道的,所以必须合理地生成另一路的虚拟观测信号,以实现纯净语音和噪声的分离是个关键.介绍了一种基于盲源分离和谱减法的单通道语音信号增强的方法.首先运用谱减法对语音进行部分去噪,产生了ICA其中的一路观测信号,并产生了对噪声的估计值.用语音和噪声估计值的帧平均能量构成了加权函数,将噪声的估计值与原始含噪语音进行加权组合,生成另一路的虚拟观测信号.由于虚拟观测信号很好地再现了实际的观测信号,所以运用ICA可以较好地实现了噪声和语音的分离.同时,盲源分离和谱减法相互结合,使语音增强的性能提高.实验证明了算法可以在信噪比很小的情况下实现对噪声的去除,其效果要优于传统的去噪算法. 相似文献
4.
5.
传统的独立分量分析算法多依赖于对峭度值的正确计算,然而峭度值的变化对随机大样本的干扰非常敏感,因此往往导致分离结果的不正确。针对于此文中提出了一种结合中值滤波技术的独立分量分析算法,实验表明,该算法能有效地克服随机大样本信号的干扰,并获得较好的盲源分离结果。 相似文献
6.
基于量子遗传算法的盲源分离算法研究 总被引:11,自引:1,他引:11
在改进遗传量子算法的基础上,提出了一种新的量子遗传算法并从理论上证明了算法的全局收剑性.提出了基于量子遗传算法与独立分量分析算法相结合的盲源分离新算法.仿真结果表明:新方法比采用常规遗传算法的盲源分离方法具有明显的高效性. 相似文献
7.
8.
盲源分离在机械振动信号分析中的应用 总被引:3,自引:0,他引:3
设备状态信号的处理是状态监测及故障诊断的基础。在实际运行环境中,信号检测传感器采集的机械振动信号必然包含设备各个部件的信号以及周围环境的强烈干扰。传统的振动信号处理方法抗扰去噪效果并不理想。盲源分离技术由于自身独特的盲处理优势,可以有效去除外来干扰并分离出源信号,有助于提高诊断的准确性。针对直升机齿轮箱振动信号进行盲源分离仿真,分离出了轴承故障振动信号,并将分离信号的功率谱与原始信号的功率谱相比较,表明盲源分离技术是机械故障诊断领域的一个有效的信号处理方法。 相似文献
9.
从混合观测数据向量中恢复不可观测的各个源信号是阵列处理和数据分析的一个典型问题.独立分量分析是解决该问题的新技术,而基于四阶累计量的联合对角化(JADE)算法是独立分量分析最常用的算法,但此算法在k>2时得到近似解,且结果不精确.提出了一种基于遗传算法盲源信号分离的算法,此算法克服了JADE算法的不足,理论分析和仿真结果表明了该算法的可行性和有效性. 相似文献
10.
《计算机应用与软件》2013,(4)
针对传统盲源分离算法存在收敛速度慢、易陷入局部最优等缺陷,提出一种混沌粒子群算法的盲源分离方法。采用信号的峰度值作为盲源信号分离目标函数,然后采用混沌粒子算法对目标函数进行求解,并对粒子群体进行混沌扰动,保持粒子群的多样性,最后采用最优解对信号进行盲源分离。结果表明,混沌粒子群算法有效提高了盲源信号分离速度,信号分离精度更高。 相似文献
11.
Grading learning for blind source separation 总被引:12,自引:0,他引:12
By generalizing the learning rate parameter to a learning rate matrix, this paper proposes a grading learning algorithm for blind source separation. The whole learning process is divided into three stages: initial stage, capturing stage and tracking stage. In different stages, different learning rates are used for each output component, which is determined by its dependency on other output components. It is shown that the grading learning algorithm is equivariant and can keep the separating matrix from becoming singular. Simulations show that the proposed algorithm can achieve faster convergence, better steady-state performance and higher numerical robustness, as compared with the existing algorithms using fixed, time-descending and adaptive learning rates. 相似文献
12.
Nonlinear blind source separation using kernels 总被引:13,自引:0,他引:13
We derive a new method for solving nonlinear blind source separation (BSS) problems by exploiting second-order statistics in a kernel induced feature space. This paper extends a new and efficient closed-form linear algorithm to the nonlinear domain using the kernel trick originally applied in support vector machines (SVMs). This technique could likewise be applied to other linear covariance-based source separation algorithms. Experiments on realistic nonlinear mixtures of speech signals, gas multisensor data, and visual disparity data illustrate the applicability of our approach. 相似文献
13.
Analysis of sparse representation and blind source separation 总被引:45,自引:0,他引:45
In this letter, we analyze a two-stage cluster-then-l(1)-optimization approach for sparse representation of a data matrix, which is also a promising approach for blind source separation (BSS) in which fewer sensors than sources are present. First, sparse representation (factorization) of a data matrix is discussed. For a given overcomplete basis matrix, the corresponding sparse solution (coefficient matrix) with minimum l(1) norm is unique with probability one, which can be obtained using a standard linear programming algorithm. The equivalence of the l(1)-norm solution and the l(0)-norm solution is also analyzed according to a probabilistic framework. If the obtained l(1)-norm solution is sufficiently sparse, then it is equal to the l(0)-norm solution with a high probability. Furthermore, the l(1)- norm solution is robust to noise, but the l(0)-norm solution is not, showing that the l(1)-norm is a good sparsity measure. These results can be used as a recoverability analysis of BSS, as discussed. The basis matrix in this article is estimated using a clustering algorithm followed by normalization, in which the matrix columns are the cluster centers of normalized data column vectors. Zibulevsky, Pearlmutter, Boll, and Kisilev (2000) used this kind of two-stage approach in underdetermined BSS. Our recoverability analysis shows that this approach can deal with the situation in which the sources are overlapped to some degree in the analyzed domain and with the case in which the source number is unknown. It is also robust to additive noise and estimation error in the mixing matrix. Finally, four simulation examples and an EEG data analysis example are presented to illustrate the algorithm's utility and demonstrate its performance. 相似文献
14.
稀疏盲源信号分离的新算法 总被引:1,自引:0,他引:1
针对以往通常采用线性规划或最短路径法计算相对复杂这一稀疏盲信号分离瓶颈,提出了一种新的算法,通过方向投影合理设置迭代初始值,结合最速下降法寻优估计源信号。新算法容易实现,分离速度快,能够很好地满足盲分离对速度的要求。 相似文献
15.
针对混合平稳信号的盲分离问题,提出了一种基于过采样技术的新盲源分离算法。对接收混合信号进行过采样,使接收平稳信号具有循环平稳特性。根据信息最大化算法,以输出信号的熵作为目标函数,将信号的循环相关函数和循环频率应用到分离矩阵的寻优中,实现信号的盲分离。仿真结果表明,该算法比传统的Infomax盲分离算法收敛速度快,收敛精度高。 相似文献
16.
Blind source separation is aimed at recovering original independent signals when their linear mixtures are observed. Various methods for estimating a recovering matrix have been proposed and applied to data in many fields, such as biological signal processing, communication engineering, and financial market data analysis. One problem these methods have is that they are often too sensitive to outliers, and the existence of a few outliers might change the estimate drastically. In this article, we propose a robust method of blind source separation based on the beta divergence. Shift parameters are explicitly included in our model instead of the conventional way which assumes that original signals have zero mean. The estimator gives smaller weights to possible outliers so that their influence on the estimate is weakened. Simulation results show that the proposed estimator significantly improves the performance over the existing methods when outliers exist; it keeps equal performance otherwise. 相似文献
17.
MISEP method for postnonlinear blind source separation 总被引:2,自引:0,他引:2
In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods. 相似文献
18.
Sparse representation and blind source separation of ill-posed mixtures 总被引:12,自引:0,他引:12
Bofill et al. discussed blind source separation (BSS) of sparse signals in the case of two sensors. However, as Bofill et al. pointed out, this method has some limitation. The potential function they introduced is lack of theoretical basis. Also the method could not be extended to solve the problem in the case of more than three sensors. In this paper, instead of the potential function method, a K-PCA method (combining K-clustering with PCA) is proposed. The new method is easy to be used in the case of more than three sensors. It is easy to be implemented and can provide accurate estimation of mixing matrix. Some criterion is given to check the effect of the mixing matrix A . Some simulations illustrate the availability and accuracy of the method we proposed. 相似文献
19.
20.
Shun-Tian Lou Xian-Da Zhang 《Fuzzy Systems, IEEE Transactions on》2003,11(3):375-383
Many independent component analysis (ICA) algorithms have been proposed for blind source separation. These algorithms belong to the LMS-type algorithm in natural. Hence, the choice of the step-size reflects a tradeoff between misadjustment and the speed of convergence. Based on the separation state of outputs of the neural network for ICA, the paper develops a fuzzy inference-based step-size selection algorithm. The fuzzy inference system consists of two inputs (the second- and higher order correlation coefficients of output components) and one output (the fuzzy learning rate). In this way, the ICA algorithms become more efficient, which is verified by simulation results. 相似文献