首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
齐立春  李臻熙  黄旭 《稀有金属》2006,30(Z1):18-22
研究了Ti-47.5Al-6(Cr,Nb,W,Si,B)%合金在不同试验温度和试验应力下的蠕变性能,并分析了不同试验条件下的蠕变机制.试验结果表明,该合金在760℃,100~150MPa具有良好的蠕变性能,在200MPa,700~800℃温度范围内蠕变激活能为U≈299kJ·mol-1,蠕变机制受原子扩散过程控制.在760℃和100~200MPa应力范围内,蠕变应力指数n从2.1变到4.2,故蠕变变形由高密度界面滑移控制变为位错攀移控制的回复蠕变.  相似文献   

2.
对Ti40合金进行600℃×4h/AC退火处理,并测试合金在500~600℃温度范同内250MPa应力下的蠕变性能、,实验结果表明,蠕变应力为250MPa的条件下,当蠕变温度不超过520℃时,合金蠕变性能较好,当蠕变温度升高到535℃时,合金蠕变性能急剧恶化,不能满足使用要求。Ti40合金蠕变稳态阶段是位错滑移塞积和攀移释放应力的动态平衡。当蠕变进入第三阶段,出现主位错的分解与合并以及位错之间的交割和缠结。在蠕变过程中,位错的缠结和塞积导致应力集中,最终在晶界处形成蠕变空洞。  相似文献   

3.
研究Mg-9Gd-3Y-0.3Zr合金在不同温度(200~300℃)和应力(30~110MPa)条件下的蠕变行为,利用金相显微镜、透射电镜等分析蠕变过程中合金组织的演变。结果表明:温度较低时(200~250℃),蠕变曲线分为瞬时和稳态蠕变两部分,利用Arrhenius公式计算出合金的平均应力指数n=2,由此判断蠕变机制是晶界滑移机制,平均蠕变激活能Q=85.6kJ/mol;当温度为300℃时,合金经过短暂的瞬时蠕变和稳态蠕变阶段后,很快进入断裂阶段。n=4.2,蠕变机制为位错攀移机制,Q=145.5 kJ/mol。在温度较低时,稀土元素所形成的析出相β¢相阻碍位错的运动,从而提高合金的抗蠕变能力;随蠕变温度升高,析出相转变为β相,在晶界处聚集长大,使晶界处易产生应力集中,促使孔洞的形成,导致合金发生蠕变断裂。  相似文献   

4.
通过蠕变曲线测定及组织形貌观察,研究了一种镍基单晶合金的蠕变行为和变形特征.结果表明:单晶合金在试验的温度和应力范围内,对施加应力和温度有明显的敏感性.由所得数据测算出合金的蠕变激活能和应力指数.蠕变初期在施加温度和应力场的作用下,立方γ′相逐渐转变成与施加应力轴方向垂直的N型筏状结构.稳态蠕变期间,合金的变形机制是位错攀移越过筏状γ′相,由于高温蠕变稳态阶段形成的N型γ′相筏状组织厚度较小,位错易于攀移,因而合金具有较大的应变速率.蠕变后期,由于塑性变形,在近断口处筏形γ′相转变成与应力轴方向呈45°角的形貌,合金的变形机制是位错剪切筏状γ′相.  相似文献   

5.
研究了Ti-600合金在3种温度(550、600、650℃)、5种应力(150、200、250、300、350 MPa)下的蠕变性能,并分析了硅化物对合金蠕变性能的影响。研究结果表明,Ti-600合金具有较小的稳态蠕变速率及较大的蠕变激活能,反映出该合金具有较好的蠕变抗力。当温度升高、应力增大时,Ti-600合金的稳态蠕变速率增大。600℃下,当蠕变应力高达350 MPa时,Ti-600合金的稳态蠕变速率低至3.72×10-7s-1。Ti-600合金的蠕变激活能最高可达574.6kJ·mol-1,最低为332.7 kJ·mol-1。在蠕变过程中,Ti-600合金内析出了S2型(TiZr)6Si3硅化物,能够钉扎位错、阻碍位错滑移,提高合金的蠕变抗力。  相似文献   

6.
通过对一种含2%Ru镍基单晶高温合金高温低应力及中温高应力条件下的蠕变性能测试和组织形貌观察,研究固溶温度对合金蠕变性能的影响。结果表明,铸态合金的成分偏析较严重,组织结构不均匀,在初熔温度以下,逐步提高固溶温度可以较大幅度地提高合金的高温和中温蠕变性能,蠕变时间增幅分别为63.7%、40.3%。测定合金在高温/低应力条件下的蠕变激活能493.4 kJ/mol,应力指数4.1。表明合金在高温低应力条件下的蠕变变形机制是位错在基体通道中滑移和位错攀移越过γ'相。  相似文献   

7.
通过Gleeble3500型热模拟机上的恒温恒应力压缩试验,研究了成分为Nb-22.5Cr-2.5Mo(%,原子分数)的Nb-Cr-Mo合金的高温蠕变行为。结果表明:Nb-Cr-Mo合金的稳态蠕变速率随应力的增加和变形温度的升高而加快, 1000℃和200 MPa条件下, Nb-Cr-Mo合金的稳态蠕变速率为5.3×10~(-5) s~(-1)。随着变形温度的升高, Nb基体中位错运动阻力减小,在温度和外力的作用下,有形成亚晶的趋势;随着变形温度的升高, Nb/NbCr_2两相颗粒间由于热膨胀系数不匹配和弹性模量之间的差异所导致的界面压应力进一步加大,从而促使Laves相颗粒中更多原子的相对运动,使得同步剪切机制更加明显,组织中的层错/孪晶结构密度明显增加,合金的蠕变抗力明显降低。蠕变变形过程中, Nb基体中位错的滑移、攀移,多边形化和Laves相NbCr_2中的同步剪切是Nb-Cr-Mo合金蠕变变形的主要方式。相对于未合金化的Nb-22.5 Cr合金,由于Mo对Nb基体的固溶强化,在基体中产生了柯氏气团钉扎位错,提高了合金的抗蠕变能力。  相似文献   

8.
采用OM、SEM和TEM等分析手段对经过雾化沉积、热等静压、热锻和热处理的喷射成形GH742合金的蠕变试样进行分析,结合蠕变曲线和蠕变性能,重点研究了合金在不同温度下蠕变时的控制机制.结果表明,650℃时喷射成形GH742合金的蠕变变形性能良好,其控制机制为晶内滑移机制下的位错切割机制;750℃时喷射成形GH742的蠕变变形性能较差,其控制机制为晶界滑移与迁移机制和晶内滑移下的位错攀移机制.  相似文献   

9.
用不同种类的 P/M(粉末冶金)钼合金轧制板材,经1900℃,1小时再结晶处理,在蠕变试验温度为1700~1900℃,蠕变应力为4.9~39.2MPa 下,研究了晶粒形态和尺寸以及合金元素和蠕变应力对稳态蠕变速率的影响。估算了蠕变变形的激活能和应变指数。  相似文献   

10.
采用粉末改性和半固态挤压工艺制备了石墨烯纳米片/Al8030复合材料, 其中石墨烯纳米片质量分数为0.5%, 研究了石墨烯纳米片对铝基复合材料显微组织和低温蠕变性能的影响。结果表明: 石墨烯纳米片主要分布于晶界处, 并且具有与挤压方向平行的定向分布特征。复合材料样品在服役条件下的稳态蠕变速率与铝合金基体相比下降超过50%。在90 ℃和50~90MPa实验条件下, 基体的蠕变机制以位错攀移机制为主, 而复合材料的蠕变则由位错滑移和位错攀移机制共同影响; 在120~150 ℃和50~90MPa实验条件下, 基体和复合材料的蠕变均由位错攀移机制和第二相增强机制协同控制, 但石墨烯纳米片的添加使得第二相增强机制对蠕变的控制更明显。  相似文献   

11.
研究了热等静压态NiAl-28Cr-5.5Mo-0.5Hf-0.012P合金的高温蠕变行为。结果表明:实验合金具有较短的减速蠕变阶段和相当长的稳态蠕变阶段以及很高的蠕变应变;在研究的实验条件范围内,合金的蠕变变形机制为低温高应力下的位错粘滞滑移控制和高温低应力下的位错攀移控制;蠕变后合金的显微组织变化不大,表明蠕变断裂受孔洞及裂纹的形成和扩展所控制,而且蠕变断裂行为符合修正后的Monkman-Grant规律:Intf+0.775lnε=1.104。  相似文献   

12.
研究了一种[001]取向镍基单晶合金的蠕变特征和变形期间的微观组织结构.结果表明:在低温高应力和高温低应力条件下,合金具有较长的蠕变寿命和较低的稳态蠕变速率;在700℃,720MPa条件下,透射电镜(TEM)观察显示蠕变期间的变形特征是1/2110位错在基体中运动,发生反应形成1/3112超肖克利(Shockley)不全位错,切入γ′相后产生层错.在900℃,450MPa条件下,没有出现蠕变初始阶段,γ′相从立方体形态演化成筏形;在加速蠕变阶段,多系滑移开动,大量位错剪切γ′相是变形的主要机制.在1070℃,150MPa条件下,γ′相逐渐转变成筏形组织,并在γ/γ′界面处形成致密的六边形位错网,位错网可以阻止位错切入γ′相,提高蠕变抗力;在蠕变后期,位错以位错对形式切入γ′相,是合金变形的主要方式.  相似文献   

13.
对均匀化炉冷态7085铝合金进行高温压缩实验,研究该合金在变形温度为350~450℃、变形速率为0.001~0.1 s 1和应变量为0~0.6条件下的流变应力及软化行为。结果表明:流变应力在变形初期随着应变的增加而迅速增大,出现峰值后逐渐软化进入稳态流变;随着变形温度的升高和应变速率的降低,峰值流变应力降低。采用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金的流变行为。分析和建立了应变量与本构方程参数(激活能、应力指数和结构因子)的关系,研究发现本构方程参数随应变量的增加而减少。合金的流变行为差异与动态回复再结晶和第二相粒子相关。  相似文献   

14.
刘德富 《特殊钢》2007,28(4):1-3
试验结果得出,44Si2CrV钢弹簧经淬火+中温回火处理并除掉表面脱碳层后,在室温下所受应力超过临界蠕变应力值时即发生蠕变;钢的抗拉(或剪切)强度越高,临界蠕变应力越高。44Si2CrV钢900℃淬火,500℃回火,临界蠕变应力 τcc =700 MPa;900℃淬火,380℃回火, τcc =800 MPa。蠕变开始时的塑性变形速率较大,之后急剧减小,在一定应力下保持一定时间后蠕变停止。经长时间压缩,蠕变变形已经停止的弹簧,于200℃保温2 h后空冷,弹簧的自由高度伸长,并且在原来的应力下加载,弹簧蠕变又重新开始。  相似文献   

15.
通过测定一种单晶镍基高温合金的高温拉伸蠕变曲线和位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出不同蠕变阶段的激活能和相关参数.结果表明在蠕变期间,内摩擦应力σ0随外加应力σ的增加而略有提高,但随温度升高而明显下降.在实验温度和应力范围内,在不同蠕变阶段,具有不同的激活能Q,时间指数m和结构常数Bi.因此,合金在不同蠕变阶段具有不同的蠕变机制.蠕变初期,形变机制是位错在基体通道中运动;而大量位错切入筏状γ'相中是蠕变第3阶段的主要特征,在γ'/γ两相界面产生空洞及空洞的聚集和微裂纹扩展是蠕变断裂的直接原因.  相似文献   

16.
Al-Fe-V-Si耐热铝合金高温形变及流变应力研究   总被引:4,自引:0,他引:4  
采用Gleebe-1500热模拟机,对Al-Fe-V-Si合金在温度350~550℃、应变速率10-4~10-2s-1、最大变形程度50%的条件下,进行高温压缩变形实验研究.在分析合金高温变形时的形变激活能和应力指数的基础上,通过非线性回归处理,得出了合金的流变应力方程,在实验范围内拟合精度较高.  相似文献   

17.
在Gleeble-1500热模拟机上,采用高温等温压缩,在应变速率为0.001~10 s-1和变形温度为300℃~500℃条件下对5052铝合金的流变应力行为进行了研究。结果表明:在应变速率为0.1 s-1(变形温度为420℃~500℃)以及应变速率为0.01和0.001(变形温度为300℃~500℃)时,5052铝合金热压缩变形出现了明显的峰值应力,表现为连续动态再结晶特征;在其他变形条件下存在较为明显的稳态流变特征。可采用Zener-Hol-lomon参数的双曲正弦函数来描述5052铝合金高温变形时的流变应力行为;在获得的流变应力σ解析表达式中A、α和n值分别为12.68×1011s-1,0.023MPa-1和5.21;其热变形激活能Q为182.25 kJ/mol。  相似文献   

18.
研究了添加少量的Fe元素(0.2%,质量分数)对TA15钛合金力学性能的影响。对比分析了未添加Fe元素的TA15合金和添加了0.20%的Fe元素的TA15合金(TA15-Fe)的拉伸性能、冲击韧性、断裂韧性、高温持久性能,并利用能谱仪测试了合金中主要元素的分布情况。研究结果表明:添加少量Fe元素对TA15钛合金的显微组织没有明显影响;两种合金的冲击韧性和室温、高温断裂韧性也基本无差异;而TA15-Fe钛合金的室温、高温抗拉强度较TA15钛合金提高约15 MPa,但在500℃下的持久寿命显著降低。这是由于Fe元素在β相内富集,起到固溶强化作用,从而提高了合金的抗拉强度;到了500℃Fe元素扩散迅速,从而加速了基体内原子和空位的运动,导致持久过程中位错攀移阻力下降,因此持久寿命降低。  相似文献   

19.
通过测定一种单晶镍基合金的高温拉伸蠕变曲线及位错运动的内摩擦应力σ0,建立了综合蠕变方程,计算出稳态蠕变期间的表观蠕变激活能及相关参数.结果表明:在蠕变期间,位错运动的内摩擦应力σ0,随外加应力的提高略有提高,随温度的升高而明显降低.蠕变后期,由于缩径使样品不同位置承受不同的有效的应力,导致筏状γ'相具有不同的粗化特征,在近断口处,载荷的有效应力增大,使筏状γ'相扭曲且粗化加剧.界面位错网对形变硬化和回复软化具有协调作用,并减缓位错切入γ'相,因此有利于合金蠕变抗力的提高.  相似文献   

20.
《钢铁》1984,(11)
本文首先讨论了Co对Ni-Cr-Co基合金的强化作用。指出,合金中加入钴主要是由于降低了合金堆垛层错能,(0%Co;20%Co合金分别为72.7;36.3erg/cm~2)拉宽了扩展位错的宽度,使位错攀移和交叉滑移在晶体中更难进行而强化了合金。其次讨论了W、Mo对合金的强化作用。指出,W、Mo综合强化不如以W单独强化的较果更好。因为,即使含有少量Mo也易析出尺寸较大的含Mo的μ相,使合金的室温塑性大幅度下降。W可提高合金的蠕变激活能(W含量为16%;18%;20%蠕变激活能分别为78.11;92.33;120.44kcal/mol,降低合金的稳态蠕变速率。W也可以降低合金的堆垛层错能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号