共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that the functional organization of adult sensory cortices, including the auditory cortex, can be modified by deafferentation, sensory deprivation, or selective sensory stimulation. This paper reviews evidence establishing that the adult primary auditory cortex develops physiological plasticity during learning. Determination of frequency receptive fields before and at various times following aversive classical conditioning and instrumental avoidance learning in the guinea pig reveals increased neuronal responses to the pure tone frequency used as a conditioned stimulus (CS). In contrast, responses to the pretraining best frequency and other non-CS frequencies are decreased. These opposite changes are often sufficient to shift cellular tuning toward or even to the frequency of the CS. Learning-induced receptive field (RF) plasticity (i) is associative (requires pairing tone and shock), (ii) highly specific to the CS frequency (e.g., limited to this frequency +/- a small fraction of an octave), (iii) discriminative (specific increased response to a reinforced CS+ frequency but decreased response to a nonreinforced CS- frequency), (iv) develops extremely rapidly (within 5 trials, the fewest trials tested), and (v) is retained indefinitely (tested to 8 weeks). Moreover, RF plasticity is robust and not due to arousal, but can be expressed in the deeply anesthetized subject. Because learning- induced RF plasticity has the major characteristics of associative memory, it is therefore referred to as "physiological memory". We developed a model of RF plasticity based on convergence in the auditory cortex of nucleus basalis cholinergic effects acting at muscarinic receptors, with lemniscal and nonlemniscal frequency information from the ventral and magnocellular divisions of the medial geniculate nucleus, respectively. In the model, the specificity of RF plasticity is dependent on Hebbian rules of covariance. This aspect was confirmed in vivo using microstimulation techniques. Further, the model predicts that pairing a tone with activation of the nucleus basalis is sufficient to induce RF plasticity similar to that obtained in behavioral learning. This prediction has been confirmed. Additional tests of the model are described. RF plasticity is thought to translate the acquired significance of sound into an increased frequency representation of behaviorally important stimuli. 相似文献
2.
Electrophysiological studies in mammal primary auditory cortex have demonstrated neuronal tuning and cortical spatial organization based upon spectral and temporal qualities of the stimulus including: its frequency, intensity, amplitude modulation and frequency modulation. Although communication and other behaviourally relevant sounds are usually complex, most response characterizations have used tonal stimuli. To better understand the mechanisms necessary to process complex sounds, we investigated neuronal responses to a specific class of broadband stimuli, auditory gratings or ripple stimuli, and compared the responses with single tone responses. Ripple stimuli consisted of 150-200 frequency components with the intensity of each component adjusted such that the envelope of the frequency spectrum is sinusoidal. It has been demonstrated that neurons are tuned to specific characteristics of those ripple stimulus including the intensity, the spacing of the peaks, and the location of the peaks and valleys (C. E. Schreiner and B. M. Calhoun, Auditory Neurosci., 1994; 1: 39-61). Although previous results showed that neuronal response strength varied with the intensity and the fundamental frequency of the stimulus, it is shown here that the relative response to different ripple spacings remains essentially constant with changes in the intensity and the fundamental frequency. These findings support a close relationship between pure-tone receptive fields and ripple transfer functions. However, variations of other stimulus characteristics, such as spectral modulation depth, result in non-linear alterations in the ripple transformation. The processing between the basilar membrane and the primary auditory cortex of broadband stimuli appears generally to be non-linear, although specific stimulus qualities, including the phase of the spectral envelope, are processed in a nearly linear manner. 相似文献
3.
The sensation of a single sound event can be altered by subsequent sounds. This study searched for neural mechanisms of such retroactive effects in macaque auditory cortex by comparing neural responses to single tones with responses to two consecutive tones. Retroactive influences were found to affect late parts of the response to a tone, which comprised 53/134 of the recordings of action potentials and 88/131 of the recordings of field potentials performed in primary, caudal, and medial auditory fields. If before or during the occurrence of the late response to the first tone a second tone was presented the late response was suppressed. Suppression of late cortical responses parallels perceptual phenomena like backward recognition masking, suggesting that suppression of late responses provides a neural correlate of auditory backward effects. 相似文献
4.
Minimum onset latency (Lmin) of single- and multiple-unit responses were mapped in the primary auditory cortex (AI) of barbiturate-anesthetized cats. Contralateral Lmin for multiple units was non-homogeneously distributed along the dorso-ventral/isofrequency axis of the AI. Responses with shorter latencies were more often located in the central, more sharply tuned region while longer latencies were more frequently encountered in the dorsal and ventral portions of the AI. For single units, a large scatter of Lmin values was found throughout the extent of the AI including cortical depth. The relationship between Lmin and previously reported spectral, intensity and temporal parameters was analyzed and revealed statistically significant correlations between minimum onset latency and the following response properties in some but not all studied animals: sharpness of tuning of a frequency response area 10 dB above threshold, broadband transient response, strongest response level, monotonicity of rate/level functions, dynamic range, and preferred frequency modulation sweep direction. This analysis suggests that Lmin is determined by several independent factors and that the prediction of Lmin based on relationships with other spectral and temporal response properties is inherently weak. The spatial distribution and the functional relationship between these response parameters may provide an important aspect of the time-based cortical representation of specific features in the animal's natural environment. 相似文献
5.
M Steinschneider CE Schroeder JC Arezzo HG Vaughan 《Canadian Metallurgical Quarterly》1994,92(1):30-43
Neural encoding of temporal speech features is a key component of acoustic and phonetic analyses. We examined the temporal encoding of the syllables /da/ and /ta/, which differ along the temporally based, phonetic parameter of voice onset time (VOT), in primary auditory cortex (A1) of awake monkeys using concurrent multilaminar recordings of auditory evoked potentials (AEP), the derived current source density, and multiunit activity. A general sequence of A1 activation consisting of a lamina-specific profile of parallel and sequential excitatory and inhibitory processes is described. VOT is encoded in the temporal response patterns of phase-locked activity to the periodic speech segments and by "on" responses to stimulus and voicing onset. A transformation occurs between responses in the thalamocortical (TC) fiber input and A1 cells. TC fibers are more likely to encode VOT with "on" responses to stimulus onset followed by phase-locked responses during the voiced segment, whereas A1 responses are more likely to exhibit transient responses both to stimulus and voicing onset. Relevance to subcortical speech processing, the human AEP and speech psychoacoustics are discussed. A mechanism for categorical differentiation of voiced and unvoiced consonants is proposed. 相似文献
6.
The tonotopicity of the cat's primary auditory cortex (AI) is thought to provide the framework for frequency-specific processing in that field. This study was designed to assess this postulate by examining the spatial distribution of neurons within AI that are activated by a single tonal frequency delivered to the contralateral ear. Distributions obtained at each of several stimulus levels were then compared to assess the influence of stimulus amplitude on the spatial representation of a given stimulus frequency in AI. Data were obtained from 308 single units in AI of four adult, barbiturate-anesthetized cats, using extracellular recording methods. Stimuli were 40-ms tone pulses presented through calibrated, sealed stimulating systems. In each animal, the CF (stimulus frequency to which the unit is most sensitive), threshold at CF, response/level function at CF, and binaural interactions were determined for isolated neurons (usually one per track) in 60-90 electrode tracks. For each unit, regardless of its CF, responses to 40 repetitions of contralateral tones of a single frequency, presented at each of four or five sound pressure levels (SPLs) in the range from 10 to 80 dB were obtained. Different test frequencies were used in each of four cats (1.6, 8.0, 11.0, and 16.0 kHz). For tones of each SPL, we generated maps of the response rates across the cortical surface. These maps were then superimposed on the more traditional maps of threshold CF. All units whose CF was equal to the test frequency could be driven at some SPL, given an appropriate monaural or binaural configuration of the stimulus. There was a clear spatial segregation of neurons according to the shapes of their CF tone response/level functions. Patches of cortex, often occupying more than 2 mm2, seemed to contain only monotonic or only nonmonotonic units. In three cortices, a patch of nonmonotonic cells was bounded ventrally by a patch of monotonic cells, and in one of these cases, a second patch of monotonic cells was found dorsal to the nonmonotonic patch. Contralateral tones of any given SPL evoked excitatory responses in discontinuous cortical territories. At low SPLs (10, 20 dB), small foci of activity occurred along the isofrequency line representing the test frequency. Many of these cells had nonmonotonic response/level functions. (ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
7.
8.
The human primary auditory area (AI) corresponds to granular cortex located on Heschl's gyrus. We studied its pattern of cytochrome oxidase and acetylcholinesterase activity in 10 normal human hemispheres. In cytochrome-oxidase-stained coronal sections layer IV was prominent by its dark staining. The overall staining intensity varied along the medio-lateral extent of Al; a 2.0-2.5-mm-wide antero-posterior dark band was present at mid-AI. In acetylcholinesterase-stained coronal sections a dark antero-posterior band appeared at the same location, corresponding to the highly granular part of Al. In cytochrome-oxidase-stained tangential sections of flattened Al, approximately 500-microm thick alternating dark and light cytochrome oxidase stripes were present in layers III and IV. These stripes were perpendicular to the dark band. Comparison with tonotopic maps of human Al obtained by activation studies suggests that the cytochrome oxidase and acetylcholinesterase dark band is most likely parallel to isofrequency lines and may correspond to the representation of frequencies critical for speech comprehension. The narrow stripes may be related to particular binaural or ampliotopic domains, whose presence is suggested by evidence from electrophysiological recordings in cat Al and from magnetoencephalographic studies in humans. 相似文献
9.
The organization of layer VI in cat primary auditory cortex (AI) was studied in mature specimens. Golgi-impregnated neurons were classified on the basis of their dendritic and somatic form. Ipsilateral and contralateral projection neurons and the corticogeniculate cells of origin were labeled with retrograde tracers and their profiles were compared with the results from Golgi studies. Layer VI was divided into a superficial half (layer VIa) with many pyramidal neurons and a deeper part (layer VIb) that is dominated by horizontal cells. Nine types of neuron were identified; four classes had subvarieties. Classical pyramidal cells and star, fusiform, tangential, and inverted pyramidal cells occur. Nonpyramidal neurons were Martinotti, multipolar stellate, bipolar, and horizontal cells. This variety of neurons distinguished layer VI from other AI layers. Pyramidal neuron dendrites contributed to the vertical, modular organization in AI, although their apical processes did not project beyond layer IV. Their axons had vertical, intrinsic processes as well as corticofugal branches. Horizontal cell dendrites extended laterally up to 700 microm and could integrate thalamic input across wide expanses of the tonotopic domain. Connectional experiments confirmed the sublaminar arrangement seen in Nissl material. Commissural cells were concentrated in layer VIa, whereas corticocortical neurons were more numerous in layer VIb. Corticothalamic cells were distributed more equally. The cytological complexity and diverse connections of layer VI may relate to a possible role in cortical development. Layer VI contained most of the neuronal types found in other layers in AI, and these cells form many of the same intrinsic and corticofugal connections that neurons in other layers will assume in adulthood. Layer VI, thus, may play a fundamental ontogenetic role in the construction and early function of the cortex. 相似文献
10.
Nonsimultaneous two-tone interactions were studied in the primary auditory cortex of anesthetized cats. Poststimulatory effects of pure tone bursts (masker) on the evoked activity of a fixed tone burst (probe) were investigated. The temporal interval from masker onset to probe onset (stimulus onset asynchrony), masker frequency, and intensity were parametrically varied. For all of the 53 single units and 58 multiple-unit clusters, the neural activity of the probe signal was either inhibited, facilitated, and/or delayed by a limited set of masker stimuli. The stimulus range from which forward inhibition of the probe was induced typically was centered at and had approximately the size of the neuron's excitatory receptive field. This "masking tuning curve" was usually V shaped, i.e., the frequency range of inhibiting masker stimuli increased with the masker intensity. Forward inhibition was induced at the shortest stimulus onset asynchrony between masker and probe. With longer stimulus onset asynchronies, the frequency range of inhibiting maskers gradually became smaller. Recovery from forward inhibition occurred first at the lower- and higher-frequency borders of the masking tuning curve and lasted the longest for frequencies close to the neuron's characteristic frequency. The maximal duration of forward inhibition was measured as the longest period over which reduction of probe responses was observed. It was in the range of 53-430 ms, with an average of 143 +/- 71 (SD) ms. Amount, duration and type of forward inhibition were weakly but significantly correlated with "static" neural receptive field properties like characteristic frequency, bandwidth, and latency. For the majority of neurons, the minimal inhibitory masker intensity increased when the stimulus onset asynchrony became longer. In most cases the highest masker intensities induced the longest forward inhibition. A significant number of neurons, however, exhibited longest periods of inhibition after maskers of intermediate intensity. The results show that the ability of cortical cells to respond with an excitatory activity depends on the temporal stimulus context. Neurons can follow higher repetition rates of stimulus sequences when successive stimuli differ in their spectral content. The differential sensitivity to temporal sound sequences within the receptive field of cortical cells as well as across different cells could contribute to the neural processing of temporally structured stimuli like speech and animal vocalizations. 相似文献
11.
CE Schreiner 《Canadian Metallurgical Quarterly》1998,3(2-3):104-122
The basic functional organization of the cat primary auditory cortex is discussed as it is revealed by electrophysiological studies of the distribution of elementary receptive field (RF) parameters. RFs of cortical neurons have been shown to vary considerably from neuron to neuron; additionally, specific RF properties vary independently. Furthermore, some of the RF properties are nonhomogeneously distributed across the auditory cortex and can be interpreted as forming "maps" that represent specific stimulus information in a topographic way. Accordingly, the functional organization of the primary auditory cortex is interpreted as a series of superimposed independent parameter maps. The consequences of such a layout for the spatial and temporal coding of pure tones and speech sounds is illustrated and ramifications for the interpretation of far-field event-related potentials are discussed. 相似文献
12.
Neural activity plays an important role in the development and maintenance of sensory pathways. However, while there is considerable experience using cochlear implants in both congenitally deaf adults and children, little is known of the effects of a hearing loss on the development of the auditory cortex. In the present study, cortical evoked potentials, field potentials, and multi- and single-unit activity evoked by electrical stimulation of the auditory nerve were used to study the functional organisation of the auditory cortex in the adult congenitally deaf white cat. The absence of click-evoked auditory brainstem responses during the first weeks of life demonstrated that these animals had no auditory experience. Under barbiturate anaesthesia, cortical potentials could be recorded from the contralateral auditory cortex in response to bipolar electrical stimulation of the cochlea in spite of total auditory deprivation. Threshold, morphology and latency of the evoked potentials varied with the location of the recording electrode, with response latency varying from 10 to 20 ms. There was evidence of threshold shifts with site of the cochlear stimulation in accordance with the known cochleotopic organisation of AI. Thresholds also varied with the configuration of the stimulating electrodes in accordance with changes previously observed in normal hearing animals. Single-unit recordings exhibited properties similar to the evoked potentials. Increasing stimulus intensity resulted in an increase in spike rate and a decrease in latency to a minimum of approximately 8 ms, consistent with latencies recorded in AI of previously normal animals (Raggio and Schreiner, 1994). Single-unit thresholds also varied with the configuration of the stimulating electrodes. Strongly driven responses were followed by a suppression of spontaneous activity. Even at saturation intensities the degree of synchronisation was less than observed when recording from auditory brainstem nuclei. Taken together, in these auditory deprived animals basic response properties of the auditory cortex of the congenitally deaf white cat appear similar to those reported in normal hearing animals in response to electrical stimulation of the auditory nerve. In addition, it seems that the auditory cortex retains at least some rudimentary level of cochleotopic organisation. 相似文献
13.
Y Hosokawa J Horikawa M Nasu S Sugimoto I Taniguchi 《Canadian Metallurgical Quarterly》1998,9(15):3421-3425
Neural interaction in the primary auditory cortex of guinea pigs anesthetized with sodium pentobarbital was studied using a single line multi-electrode (4 x 1) aligned across and along the isofrequency band. Under the spontaneous condition, the neural interaction was isotropic; the amplitude of cross-correlogram peaks decreased as the electrode separation increased both across and along the isofrequency band. Under tone stimulation, the neural interaction was anisotropic; the amplitude of peaks was decreased rapidly beyond 400 microm across the isofrequency band, while it decreased little up to 700 microm along the isofrequency band. This anisotropic interaction was dependent on the stimulus intensity. 相似文献
14.
Learning-induced changes of the spectro-temporal characteristics of primary auditory cortex (AI) units were studied by response plane analysis of recordings from the AI in unanaesthetized Mongolian gerbils. Using response planes obtained prior to and after auditory discrimination training bins of significant change were identified and their spectro-temporal distribution was studied. Bins of significant changes were generally found to be distributed over the entire spectro-temporal receptive field but occurred most frequently within the first 100 ms of response in the spectral neighbourhood (1.5 octaves) of the frequency of the reinforced conditioned stimulus. Training-induced response decreases occurred early after 10 ms for reinforced conditioned tones and tones in the frequency neighbourhood. Response increases occurred so early only for non-reinforced tones in the neighbourhood of the reinforced frequency and occurred later (after 40 ms) for the reinforced tones. The results are discussed in the light of dynamic disinhibition. 相似文献
15.
The auditory afterimage is a sensation which occurs for several seconds after the exciting acoustic signal has been switched off, and which roughly corresponds to the inverse of the spectrum of the exciting signal. In contrast to the well-known visual afterimage, the physiological mechanism generating the auditory afterimage has been questionable so far. Neuromagnetic source imaging revealed that the source of cortical neural activity which coincides with the sensation of the afterimage is located in the auditory cortex and exhibits a tonotopic organization similar to that of the sustained response which occurs during continuous presentation of an acoustic stimulus. It is concluded that the neural processes leading to the generation of the two phenomena -sustained response and auditory afterimage - are similar. 相似文献
16.
JJ Eggermont 《Canadian Metallurgical Quarterly》1995,6(12):1645-1648
Responses were recorded from 130 single neurones in the primary auditory cortex of 12 ketamine-anaesthetized cats in response to double-click stimuli, to a /ba/-/pa/ phoneme continuum and to gaps inserted early (after 5 ms) and late (after 500 ms) in a 1 s duration noiseburst. Stimulus levels were between 45 and 75 dB SPL. Neural detection threshold for the 'late gap' was less than 5 ms. For the double click and 'early gap' stimuli thresholds were between 40 and 50 ms, whereas the phoneme continuum threshold for voice-onset-time (VOT) was between 10 and 25 ms. The 'late gap' and VOT thresholds are similar to psychophysical gap detection and the /ba/-/pa/ categorical perception boundary respectively. 相似文献
17.
Transient broad-band stimuli that mimic in their spectrum and time waveform sounds arriving from a speaker in free space were delivered to the tympanic membranes of barbiturized cats via sealed and calibrated earphones. The full array of such signals constitutes a virtual acoustic space (VAS). The extra-cellular response to a single stimulus at each VAS direction, consisting of one or a few precisely time-locked spikes, was recorded from neurons in primary auditory cortex. Effective sound directions form a virtual space receptive field (VSRF). Near threshold, most VSRFs were confined to one quadrant of acoustic space and were located on or near the acoustic axis. Generally, VSRFs expanded monotonically with increases in stimulus intensity, with some occupying essentially all of the acoustic space. The VSRF was not homogeneous with respect to spike timing or firing strength. Typically, onset latency varied by as much as 4-5 msec across the VSRF. A substantial proportion of recorded cells exhibited a gradient of first-spike latency within the VSRF. Shortest latencies occupied a core of the VSRF, on or near the acoustic axis, with longer latency being represented progressively at directions more distant from the core. Remaining cells had VSRFs that exhibited no such gradient. The distribution of firing probability was mapped in those experiments in which multiple trials were carried out at each direction. For some cells there was a positive correlation between latency and firing probability. 相似文献
18.
Infrequent "deviant' auditory stimuli embedded in a homogeneous sequence of "standard' sounds evoke a neuromagnetic mismatch field (MMF), which is assumed to reflect automatic change detection in the brain. We investigated whether MMFs would reveal hemispheric differences in cortical auditory processing. Seven healthy adults were studied with a whole-scalp neuromagnetometer. The sound sequence, delivered to one ear at time, contained three infrequent deviants (differing from standards in duration, frequency, or interstimulus interval) intermixed with standard tones. MMFs peaked 9-34 msec earlier in the right than in the left hemisphere, irrespective of the stimulated ear. Whereas deviants activated only one MMF source in the left hemisphere, two temporally overlapping but spatially separate sources, one in the temporal lobe and another in the inferior parietal cortex, were necessary to explain the right-hemisphere MMFs. We suggest that the bilateral MMF components originating in the supratemporal cortex are feature specific whereas the right-hemisphere parietal component reflects more global auditory change detection. The results imply hemispheric differences in sound processing and suggest stronger involvement of the right than the left hemisphere in change detection. 相似文献
19.
The mammalian auditory cortex contains multiple fields but their functional role is poorly understood. Here we examine the responses of single neurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized cats to frequency-modulated (FM) sweeps. FM sweeps traversed the excitatory response area of the neuron under study, and FM direction and the linear rate of change of frequency (RCF) were varied systematically. In some neurons, sweeps of different sound pressure levels (SPLs) also were tested. The response magnitude (number of spikes corrected for spontaneous activity) of nearly all field P neurons varied with RCF. RCF response functions displayed a variety of shapes, but most functions were of low-pass characteristic or peaked at rather low RCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass or nonselective RCF response function characteristics) all displayed spike count-SPL functions to tone burst onsets that were monotonic or weakly nonmonotonic. RCF response functions and best RCFs often changed with SPL. For most neurons, FM directional sensitivity, quantified by a directional sensitivity (DS) index, also varied with RCF and SPL, but the mean and width of the distribution of DS indices across all neurons was independent of RCF. Analysis of response timing revealed that the phasic response of a neuron is triggered when the instantaneous frequency of the sweep reaches a particular value, the effective Fi. For a given neuron, values of effective Fi were independent of RCF, but depended on FM direction and SPL and were associated closely with the boundaries of the neuron's frequency versus amplitude response area. The standard deviation (SD) of the latency of the first spike of the response decreased with RCF. When SD was expressed relative to the rate of change of stimulus frequency, the resulting index of frequency jitter increased with RCF and did so rather uniformly in all neurons and largely independent of SPL. These properties suggest that many FM parameters are represented by, and may be encoded in, orderly temporal patterns across different neurons in addition to the strength of responses. When compared with neurons in primary and anterior auditory fields, field P neurons respond better to relatively slow FMs. Together with previous studies of responses to modulations of amplitude, such as tone onsets, our findings suggest more generally that field P may be best suited for processing signals that vary relatively slowly over time. 相似文献
20.
Visscher Kristina M.; Kahana Michael J.; Sekuler Robert 《Canadian Metallurgical Quarterly》2009,35(1):46
Using a short-term recognition memory task, the authors evaluated the carryover across trials of 2 types of auditory information: the characteristics of individual study sounds (item information) and the relationships between the study sounds (study set homogeneity). On each trial, subjects heard 2 successive broadband study sounds and then decided whether a subsequently presented probe sound had been in the study set. On some trials, the similarity of the probe item to stimuli presented on the preceding trial was manipulated. This item information interfered with recognition, and false alarms increased from 0.4% to 4.4%. Moreover, the interference was tuned so that only stimuli that were very similar to each other interfered. On other trials, the relationship among stimuli was manipulated to alter the criterion subjects used in making recognition judgments. The effect of this manipulation was confined to the trial on which the criterion change was generated and did not affect the subsequent trial. These results demonstrate the existence of a sharply tuned carryover of auditory item information but no carryover of the effects of study set homogeneity. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献