首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macro-defect free (MDF) cement is a high-strength cement-polymer composite produced by mixing cement (commonly calcium aluminate cement) with small amounts of polymer (commonly polyvinyl alcohol acetate) and water, applying high shear, and finally applying relatively low pressure (about 5 MPa) and modest temperature (about 80-100 °C). However, MDF cements lose considerable strength when exposed to water. The objective of this study was to explore the effects of cement and polymer compositions on flexural strength and water sensitivity. Calcium aluminate cements were used with Al2O3 contents between 42% and 79%. Production of MDF cement was successful with all cements, but the highest strength (268 MPa) was obtained with 70% Al2O3 cement. Secondly, PVAs were used that differed in their degree of hydrolysis between 73% and 99%. Of these, the one with a moderate degree of hydrolysis produced the highest strength (228 MPa). All mixtures had strength loss on exposure to water, but PVAs with moderate degrees of hydrolysis exhibited the lowest strength losses (50-60%).  相似文献   

2.
An extension of the application of calcium phosphate cements (CPC) to load-bearing defects, e.g. in vertebroplasty, would require less brittle cements with an increased fracture toughness. Here we report the modification of CPC made of alpha-tricalcium phosphate (α-TCP) with 2-hydroxyethylmethacrylate (HEMA), which is polymerised during setting to obtain a mechanically stable polymer-ceramic composite with interpenetrating organic and inorganic networks. The cement liquid was modified by the addition of 30–70 % HEMA and ammoniumpersulfate/tetramethylethylendiamine as initiator. Modification of α-TCP cement paste with HEMA decreased the setting time from 14 min to 3–8 min depending on the initiator concentration. The 4-point bending strength was increased from 9 MPa to more than 14 MPa when using 50 % HEMA, while the bending modulus decreased from 18 GPa to approx. 4 GPa. The addition of ≥50 % HEMA reduced the brittle fracture behaviour of the cements and resulted in an increase of the work of fracture by more than an order of magnitude. X-ray diffraction analyses revealed that the degree of transformation of α-TCP to calcium deficient hydroxyapatite was lower for polymer modified cements (82 % for polymer free cement and 55 % for 70 % HEMA) after 24 h setting, while the polymerisation of HEMA in the cement liquid was quantitative according to FT-IR spectroscopy. This work demonstrated the feasibility of producing fracture resistant dual-setting calcium phosphate cements by adding water soluble polymerisable monomers to the liquid cement phase, which may be suitable for an application in load-bearing bone defects.  相似文献   

3.
Macroporous calcium phosphate cements (CPCs) were developed using genipin-crosslinked gelatin microspheres (GMs) with two weight ratios (2.5 wt% and 5 wt%). The initial setting time of the composite was prolonged by GMs. After GMs/CPCs were soaked in phosphate-buffered saline (PBS) for several weeks, macropores appeared as a result of the degradation of GMs. The presence of GMs accelerated the setting reaction and improved the structure of the composite. The compressive strength increased up to 12 MPa (2.5 wt% GMs/CPCs) and 14 MPa (5 wt% GMs/CPCs) after one week of PBS soaking, then gradually decreased to 9 MPa (2.5 wt% GMs/CPCs) and 7 MPa (5 wt% GMs/CPCs) after three weeks of soaking, and further to 6 MPa (2.5 wt% GMs/CPCs) and 2 MPa (5 wt% GMs/CPCs) after five weeks of soaking. CPCs with 2.5 wt% GMs were the most favorable composite in the tested samples. Cell experiments showed that rat osteoblasts displayed normal morphologies when exposed to the 2.5 wt% GMs/CPCs, and proliferation of the cells was also enhanced. An in vivo study showed that new bone tissue was able to grow into the pores that resulted from GM degradation. This study suggests that the new composite could be a promising candidate for use as a bone substitute under non-compression-loaded circumstances.  相似文献   

4.
We report the mechanical fracture strength and physical properties of fabricated carbons made from pulverized metallurgical coke bonded with coal tar pitch, followed by pyrolysis. Tensile strength from diametral compression of discs ranged from 9.7 ± 1.3 MPa for materials bonded with 13 wt% pitch to 63 ± 7.1 MPa for materials bonded with 40 wt% pitch. Materials made by dry mixing pulverized pitch with coke were comparable with materials made by mixing coke powder with a solution of pitch in toluene. Strength increased with pyrolysis temperature. Pyrolyzed pitch-bonded coke was significantly stronger and lighter than ordinary Portland cement concrete.  相似文献   

5.
In this study, pure and NH2-functionalized graphene oxide (GO) nanosheets have been added to the cement mortar with different weight percents (0.05, 0.10, 0.15, 0.20 and 0.25 wt%). In addition, the effects of functionalizing GO on the microstructure and mechanical properties (flexural/compressive strengths) of cement composite have been investigated for the first time. Scanning electron microscopy (SEM) images showed that GO filled the pores and well dispersed in concrete matrix, whereas exceeding GO additive from 0.10 wt% caused the formation of agglomerates and microcracks. In addition, mercury intrusion porosimetry confirmed the significant effects of GO and functionalizing groups on filling the pores. NH2-functionalizing helped to improve the cohesion between GO nanosheets and cement composite. Compressive strengths increased from 39 MPa for the sample without GO to 54.23 MPa for the cement composites containing 0.10 wt% of NH2-functionalized GO. Moreover, the flexural strength increased to 23.4 and 38.4% by compositing the cement paste with 0.10 wt% of pure and NH2-functionalized GO, compared to the sample without GO, respectively. It was shown that functionalizing considerably enhanced the mechanical properties of GO/cement composite due to the interfacial strength between calcium silicate hydrates (C-S-H) gel and functionalized GO nanosheets as observed in SEM images. The morphological results were in good agreement with the trend obtained in mechanical properties of GO/cement composites.  相似文献   

6.
In this study, we present results of our research on biodegradable monetite (DCPA, CaHPO4) cement with surface-modified multi-walled carbon nanotubes (mMWCNTs) as potential bone defect repair material. The cement pastes showed desirable handling properties and possessed a suitable setting time for use in surgical setting. The incorporation of mMWCNTs shortened the setting time of DCPA and increased the compressive strength of DCPA cement from 11.09 ± 1.85 MPa to 21.56 ± 2.47 MPa. The cytocompatibility of the materials was investigated in vitro using the preosteoblast cell line MC3T3-E1. An increase of cell numbers was observed on both DCPA and DCPA-mMWCNTs. Scanning electron microscopy (SEM) results also revealed an obvious cell growth on the surface of the cements. Based on these results, DCPA-mMWCNTs composite cements can be considered as potential bone defect repair materials.  相似文献   

7.
In the present study new calcium sulfate-based nanocomposite bone cement with improved physicochemical and biological properties was developed. The powder component of the cement consists of 60 wt% α-calcium sulfate hemihydrate and 40 wt% biomimetically synthesized apatite, while the liquid component consists of an aqueous colloidal silica suspension (20 wt%). In this study, the above mentioned powder phase was mixed with distilled water to prepare a calcium sulfate/nanoapatite composite without any additive. Structural properties, setting time, compressive strength, in vitro bioactivity and cellular properties of the cements were investigated by appropriate techniques. From X-ray diffractometer analysis, except gypsum and apatite, no further phases were found in both silica-containing and silica-free cements. The results showed that both setting time and compressive strength of the calcium sulfate/nanoapatite cement improved by using colloidal silica suspension as cement liquid. Meanwhile, the condensed phase produced from the polymerization process of colloidal silica filled the micropores of the microstructure and covered rodlike gypsum crystals and thus controlled cement disintegration in simulated body fluid. Additionally, formation of apatite layer was favored on the surfaces of the new cement while no apatite precipitation was observed for the cement prepared by distilled water. In this study, it was also revealed that the number of viable osteosarcoma cells cultured with extracts of both cements were comparable, while silica-containing cement increased alkaline phosphatase activity of the cells. These results suggest that the developed cement may be a suitable bone filling material after well passing of the corresponding in vivo tests.  相似文献   

8.
Some belite-ye´elimite-ferrite (BYF) cements present low mechanical strengths mainly due to the slow reactivity of belite. A solution to this problem may be the activation of BYF clinkers by preparing them with a coexistence of alite and ye'elimite, which are known as belite-alite-ye´elimite (BAY) cements.The objective of this work was the preparation of BAY mortars that show higher mechanical strengths than BYF mortars. In order to attain this, the clinkering conditions to prepare BAY-clinker (2 kg) with the following mineralogical composition 60.6 (2) wt% of belite, 14.3 (2) wt% of alite and 10.4 (1) wt% of ye'elimite were optimized (900°C/30 min-1300°C/15 min). The hydration mechanism of cement pastes (with 12 wt% of anhydrite and water-to-cement ratios of 0.4 and 0.5) was studied through laboratory X-ray powder diffraction and thermo-analyses. Finally, BAY mortars with higher compressive strengths than BYF-mortars were obtained (viz. 24.8 and 17.1 MPa for BAY and BYF mortars at 7 days of hydration, respectively).  相似文献   

9.
This paper presents an experimental investigation on the sulfate resistance of blended cements containing various amounts of natural pozzolan and/or Class-F fly ash. The performance of blended cements was monitored by exposing the prepared mortar specimens to a 5% Na2SO4 solution for 78 weeks. For comparison, an ordinary Portland cement (produced with the same clinker as blended cements) and a sulfate resistant Portland cement (produced from a different clinker) were also used. In addition to the cement chemistry, water–cement (w/c) ratio of mortars was another parameter selected that will presumably affect the performance of mortars. The experimental results of expansion measurements showed that the effect of w/c ratio was more pronounced for the low sulfate resistant cements with higher C3A amounts, while the blended cements were less affected by an increase in the w/c ratio.  相似文献   

10.
Bioactive bone cements can promote bone growth and the formation of a strong chemical bond between the implant and bone tissue increasing the lifetime of the prosthesis. This study aims at synthesizing a new bioactive bone cement with different amounts of ibuprofen (5, 10 and 20 wt%) using a low toxicity activator, and investigating its in vitro release profile. The effect of ibuprofen (IB) on the setting parameters, residual monomer and bioactivity in synthetic plasma was also evaluated. It was verified that the different IB contents do not prevent the growth of calcium phosphate aggregates on composite surfaces, confirming that the cements are potentially bioactive. A relevant advantage of these formulations was a significant improvement in their curing parameters with increasing IB amount, associated to a reduction of the peak temperature and an extension of the setting time. The investigated cements released an average of about 20 % of the total incorporated ibuprofen during 30 days test, with IB20 liberating the highest percentage of drug 20.6 %, and IB10 and IB5, respectively 19.1 and 17.6 %. This behavior was attributed to the low solubility of this drug in aqueous media and was also related with the hydrophobic character of the polymer. Regarding the therapeutic concentration sufficient to suppress inflammation, the cement with 10 % of ibuprofen achieved the required release rate for 1 week and the cement with 20 % for 2 weeks.  相似文献   

11.
High-strength cement was obtained by a simple process technique. Powders of Secar 71 were cold isostatically pressed (CIP) into green bodies with a relative density of 66 vol%. The green bodies were then immersed in water or kept in humid air for curing at various temperatures for different periods of time. Hydrated cements with high density and low porosity were obtained. The water uptake was more than 20% (by weight) after one day. Over the course of a few days the open porosity decreased to a few per cent. The three-point bending strength of the hydrated cement bodies was 50–80 MPa, and the compressive strength exceeded 200 MPa. The hardness measurement revealed a twofold increase, compared with the control specimens which were prepared by the conventional mixing method. The microstructure of the CIP-processed cements showed a macropore-free composite structure. It was concluded that, by applying CIP, high-strength cement could be produced using commercially available cement without any auxiliary additives.  相似文献   

12.
A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting blended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.  相似文献   

13.
The purpose of this study is to evaluate the physicochemical properties and in vitro osteogenic activity of radiopaque calcium silicate–gelatin cements. The radiopacity, setting time, working time, flow, diametral tensile strength, pH value, washout resistance and morphology of the cements with gelatin (0, 5 and 10 % by weight) were measured, which compared to a popular endodontic material, ProRoot white-colored mineral trioxide aggregate (WMTA). The cell morphology, cell attachment and proliferation, alkaline phosphatase and osteocalcin levels on the cements were measured by culturing the specimens with dental pulp cells. The results indicated that the presence of gelatin significantly (P < 0.05) reduced radiopacity and diametral tensile strength and prolonged setting time. Nevertheless, the 5 wt% gelatin cement had a radiopacity (5.1 mm of Al thickness) higher than ISO 6876:2001 standards (3 mm of Al thickness). The setting time (33 min), working time (9 min) and flow value (17.4 mm) of the 5 wt% gelatin cement were significantly (P < 0.05) better than those of WMTA (corresponding 165, 6 min and 14.2 mm). The fresh WMTA completely degraded after soaking in a physiological solution for 1 h, while the gelatin cements resisted washout, showing no noticeable breakdown even after 1 day of soaking. The gelatin cement enhanced the higher expression of cell attachment, proliferation and differentiation as compared to WMTA. It was concluded that the 5 wt% gelatin–calcium silicate hybrid cement appears to be promising as a radiopaque biomaterial for medical applications such as endodontics and vertebroplasty.  相似文献   

14.
Novel biodegradable β-tricalcium phosphate (β-TCP) cements with anti-washout properties were created on the basis of chelate-setting mechanism of inositol phosphate (IP6) using β-TCP powders. The β-TCP powders were ball-milled using ZrO2 beads for 0–6 h in the IP6 solutions with concentrations from 0 to 10,000 ppm. The chelate-setting β-TCP cement with anti-washout property was successfully fabricated by mixing the β-TCP powder ball-milled in 3,000 ppm IP6 solution for 3 h and 2.5 mass% Na2HPO4 solution, and compressive strength of the cement was 13.4 ± 0.8 MPa. An in vivo study revealed that the above cement was directly in contact with host and newly formed bones without fibrous tissue layers, and was resorbed by osteoclast-like cells on the surface of the cement. The chelate-setting β-TCP cement with anti-washout property is promising for application as a novel injectable artificial bone with both biodegradability and osteoconductivity.  相似文献   

15.
Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b = 0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25 ± 5 MPa) and higher compressive elastic modulus (492 ± 17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a = 0.125 and b = 0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment.  相似文献   

16.
The hydroxyapatite (HAp) powder preparation process was optimized to fabricate inositol phosphate-HAp (IP6-HAp) cement with enhanced mechanical properties. Starting HAp powders were synthesized via a wet chemical process. The effect of the powder preparation process on the morphology, crystallinity, median particle size, and specific surface area (SSA) of the cement powders was examined, together with the mechanical properties of the resulting cement specimens. The smallest crystallite and median particle sizes, and the highest SSA were obtained from ball-milling of as-synthesized HAp powder under wet conditions and then freeze-drying. IP6-HAp cement fabricated with this powder had a maximum compressive strength of 23.1 ± 2.1 MPa. In vivo histological studies using rabbit models revealed that the IP6-HAp cements were directly in contact with newly formed and host bones. Thus, the present chelate-setting HAp cement is promising for application as a novel paste-like artificial bone.  相似文献   

17.
In this study, the sulfate resistance of five different high-C3A Portland and Portland-limestone cements and their combinations with 30–50 % slag were examined at both 5 and 23 °C according to CSA A3004-C8 (similar to ASTM C1012). Also, XRD was used to identify the phases formed after sulfate attack. It was found that in 23 °C exposure, while 100 % cement mixes deteriorated due to conventional ettringite-based sulfate attack, partially replacing the cements with 30 or 50 % slag was effective in making the mixes highly sulfate-resistant. At 5 °C, all of the 100 % cement mortar bars expanded more than the test limits and eventually completely disintegrated due to the formation of thaumasite. Partially replacing cement with 30 % slag was only effective in controlling the deterioration for Portland cements but not Portland-limestone cements. However, all the Portland-limestone cements with 50 % slag were resistant to the thaumasite form of sulfate attack after 2 years.  相似文献   

18.
To develop high macroporous and degradable bone cements which can be used as the substitute of bone repairing and drug carriers, cross-linked gelatin microspheres (GMs) and calcium sulfate dihydrate (CSD) powder were incorporated into calcium phosphate bone cement (CPC) to induce macropores, adjust drug release and control setting time of α-TCP–liquid mixtures after degradation of GMs and dissolution of CSD. In this study, CSD was introduced into CPC/10GMs composites to offset the prolonged setting time caused by the incorporation of GMs, and gentamicin sulphate (GS) was chosen as the model drug entrapped within the GMs. The effects of CSD amount on the cement properties, drug release ability and final macroporosity after GMs degradation were studied in comparison with CPC/GMs cements. The resulting cements presented reduced setting time and increased compressive strength as the content of CSD below 5 wt%. Sustained release of GS was obtained on at least 21 days, and release rates were found to be chiefly controlled by the GMs degradation rate. After 4 weeks of degradation study, the resulting composite cements appeared macroporous, degradable and suitable compressive strength, suggesting that they have potential as controlled local drug delivery system and for cancellous bone applications.  相似文献   

19.
A composite bone cement designated G2B1 that contains β tricalcium phosphate particles was developed as a bone substitute for percutaneous transpedicular vertebroplasty. In this study, both G2B1 and commercial PMMA bone cement (CMW1) were implanted into proximal tibiae of rabbits, and their bone-bonding strengths were evaluated at 4, 8, 12 and 16 weeks after implantation. Some of the specimens were evaluated histologically using Giemsa surface staining, contact microradiography (CMR) and scanning electron microscopy (SEM). Histological findings showed that G2B1 contacted bone directly without intervening soft tissue in the specimens at each time point, while there was always a soft tissue layer between CMW1 and bone. The bone-bonding strength of G2B1 was significantly higher than that of CMW1 at each time point, and significantly increased from 4 weeks to 8 and 12 weeks, while it decreased significantly from 12 weeks to 16 weeks. Bone remodeling of the cortex under the cement was observed especially for G2B1 and presumably influenced the bone bonding strength of the cement. The results indicate that G2B1 has bioactivity, and bone bonding strength of bioactive bone cements can be estimated fairly with this experimental model in the short term.  相似文献   

20.
The new European Standard EN 197-1 emphasizes the development of composite cements. In Greece a variety of pozzolanic and/or hydraulic materials are used as cement main constituents. Until now, limestone could be used only as a filler (up to 3% w/w), but since 2001 (application of EN 197-1) it can also be used as a main cement constituent. In this work a comparison between limestone and some of the materials that are already used in Greece is presented. An ordinary Portland cement and three Portland-composite cements containing limestone, natural pozzolana or fly ash were produced. The grinding process was designed in order to produce cements of the same 28 day compressive strength. The mechanical and physical properties of the cements were measured and hydrated products, formed after 1–28 days, were identified by means of XRD. The composite cements present significant differences as far as the clinker fineness, the development of the strength, the water demand and the hydration rate is concerned. The production of Portland-limestone cements seems to be very challenging, due to the satisfactory properties of the limestone cements as well as the low cost and the high availability of limestone in Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号