首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In order to obtain transgenic fusarium wilt resistant watermelon plants, squash DNA was introduced into the ovaries of watermelon plants via the pollen-tube pathway. The introduction of foreign genes into ovaries was accomplished using co-transformation with the CaMV35S-GUS as a marker. Transformed watermelon plants contained integrated copies of the GUS activity and the seeds of transformed progeny produced a blue color when stained with 5-bromo-4-chloro-3-indolyl glucuronide, whereas seeds from untransformed control plants did not. Of 200 transformed seedlings, ten were wilt resistant. The presence of the GUS activity in the genome of stable transgenic seedlings was confirmed by Southern blot analysis. Furthermore, the generation of random amplified polymorphic DNA (RAPD) fingerprints using primers with embedded restriction sites showed amplification products unique to these transgenic plants. Primers OPA-1 and OPA-9 gave distinct band patterns of genomic DNA using the polymerase chain reaction.  相似文献   

4.
5.
Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyltransferase (FTase) gene was examined using transgenic expression of the beta-glucuronidase (GUS) gene fused to a 3.2 kb 5' upstream sequence of the gene encoding the pea FTase beta subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase beta subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.  相似文献   

6.
Two lipoxygenase (LOX) genes (tomloxA and tomloxB) are expressed in ripening tomato fruit, and tomloxA is also expressed in germinating seedlings. The 5'-upstream regions of these genes were isolated to study the regulatory elements involved in coordinating tomlox gene expression. Sequence analysis of the promoters did not reveal any previously characterized regulatory elements except for TATA and CAAT boxes. However, the sequence motif GATAcAnnAAtnTGATG was found in both promoters. Chimeric gene fusions of each tomlox promoter with the beta-glucuronidase reporter gene (gus) were introduced into tobacco and tomato plants via Agrobacterium-mediated transformation. GUS activity in tomloxA-gus plants during seed germination peaked at day 5 and was enhanced by methyl jasmonate (MeJa) treatment. No GUS activity was detected in tomloxB-gus seedlings. Neither wounding nor abscisic acid (ABA) treatment of transgenic seedlings modified the activity of either promoter. During fruit development, GUS expression in tomloxA-gus tobacco fruit increased 5 days after anthesis (DAA) and peaked at 20 DAA. In tomloxB-gus tobacco fruit, GUS activity increased at 10 DAA and peaked at 20 DAA. In transgenic tomato fruit, tomloxA-gus expression was localized to the outer pericarp during fruit ripening, while tomloxB-gus expression was localized in the outer pericarp and columella. These data demonstrate that the promoter regions used in these experiments contain cis-acting regulatory elements required for proper regulation of tomlox expression during development and for MeJa-responsiveness.  相似文献   

7.
8.
9.
The cDNA encoding castor bean endosperm isocitrate lyase (ICL) was expressed under the control of the promoter of the small subunit of pea ribulose bisphosphate carboxylase in transformed tobacco. ICL protein was detected using anti-ICL antibodies on immunoblots of total leaf protein extracts. Nycodenz density gradient separation of the extracts from the transgenic tobacco leaves showed ICL co-fractionated with hydroxypyruvate reductase, a peroxisomal matrix marker protein, and away from lactate dehydrogenase, a cytosolic marker protein. Immunoelectron microscopy of ultrathin leaf sections demonstrated the location of ICL within the matrix of the leaf peroxisomes of the transgenic plants. In vitro transcribed and translated ICL was also imported into leaf peroxisomes isolated from germinating sunflower seeds. The in vivo and in vitro import of this protein into leaf peroxisomes provides strong support for the notion that the import machinery of glyoxysomes and peroxisomes is very similar.  相似文献   

10.
11.
12.
In the past few years many alpha- and beta-tubulin genes of different organisms have been cloned and studied, and in most systems studied they constitute multigene families. In plants, most studies have been done in Arabidopsis thaliana and Zea mays. In this paper, the study of mRNA accumulation by in situ hybridization and the activity of three maize alpha-tubulin gene promoters (tua1, tua2 and tua3) in transgenic tobacco plants are described. In maize, the expression of these three tubulin isotypes differ in the root and shoot apex and is associated with different groups of cells throughout the distinct stages of cell differentiation. In transgenic tobacco plants the promoters of the genes, fused to the uidA reporter gene (GUS), direct expression to the same tissues observed by in situ hybridization experiments. The tua1 promoter is mainly active in cortex-producing meristematic cells and in pollen, whereas tua3 is active in cells which are differentiating to form vascular bundles in the root and shoot apices. The accumulation of tua2 mRNA is detected by RNA blot in a similar form as tua1, but at a very much low level. In situ hybridization indicates that the tua2 mRNA specifically accumulates in the maize root epidermis. No GUS staining was detected in transgenic tobacco plants with the tua2 promoter. The difference in expression of the specific genes may be linked to processes where microtubules have different functions, suggesting that in plants, as in animals, there are differences in the function of the tubulin isotypes.  相似文献   

13.
14.
The rpL34 gene, which encodes a cytoplasmic ribosomal protein with a high homology to the rat 60S r-protein L34, was isolated from a genomic library of tobacco (Nicotiana tabacum L. cv. Xanthi-nc). A 1500 bp upstream promoter fragment was fused to the chloramphenicol acetyltransferase (CAT) reporter gene or beta-glucuronidase (GUS) reporter gene and transferred into tobacco plants by the Agrobhacterium-mediated leaf disk transformation method. Analysis of CAT activity in leaf tissues showed that mechanical wounding increased the rpL34 promoter activity about 5 times as compared to untreated controls and that the promoter activity was further enhanced by plant growth regulators, 2,4-dichlorophenoxyacetic acid and benzyladenine. Histochemical GUS staining patterns of the transgenic plants showed that the rpL34 promoter activity is high in actively growing tissues, including various meristems, floral organs, and developing fruits. A series of 5' deletion analyses of the rpL34 promoter indicated that a 50 bp region located between -179 and -129 is essential for wound, auxin and cytokinin responses. Deletion of this region reduced the promoter activity to an undetectable level. Insertion of the 50 nucleotide sequence into a minimal promoter restored the promoter activity and the promoter strength was proportional to the copy number of the upstream sequence. The role of TATA and CAAT box regions was studied by a series of 3' deletion analyses. A 3' deletion up to -28 did not significantly affect the promoter strength. However deletion of the promoter up to 70 bp, which deleted the TATA box region, significantly reduced promoter activity. Further deletion of the promoter up to - 104. eliminating the CAAT box region, abolished the promoter activity. These results suggest that the TATA box and CAAT box regions are also important for the rpL34 promoter activity in addition to the 50 bp upstream region.  相似文献   

15.
Cassava vein mosaic virus (CsVMV) is a pararetrovirus that infects cassava plants in Brazil. A promoter fragment isolated from CsVMV, comprising nucleotides -443 to +72, was previously shown to direct strong constitutive gene expression in transgenic plants. Here we report the functional architecture of the CsVMV promoter fragment. A series of promoter deletion mutants were fused to the coding sequence of uidA reporter gene and the chimeric genes were introduced into transgenic tobacco plants. Promoter activity was monitored by histochemical and quantitative assays of beta-glucuronidase activity (GUS). We found that the promoter fragment is made up of different regions that confer distinct tissue-specific expression of the gene. The region encompassing nucleotides -222 to -173 contains cis elements that control promoter expression in green tissues and root tips. Our results indicate that a consensus as1 element and a GATA motif located within this region are essential for promoter expression in those tissues. Expression from the CsVMV promoter in vascular elements is directed by the region encompassing nucleotides -178 to -63. Elements located between nucleotides -149 and -63 are also required to activate promoter expression in green tissues suggesting a combinatorial mode of regulation. Within the latter region, a 43 bp fragment extending from nucleotide -141 to -99 was shown to interact with a protein factor extracted from nuclei of tobacco seedlings. This fragment showed no sequence homology with other pararetrovirus promoters and hence may contain CsVMV-specific regulatory cis elements.  相似文献   

16.
The regulation of synthesis and accumulation of the essential amino acid lysine was studied in seeds of transgenic tobacco plants expressing, in a seed-specific manner, two feedback-insensitive bacterial enzymes: dihydrodipicolinate synthase (EC 4.2.1.52) and aspartate kinase (EC 2.7.2.4). High-level expression of the two bacterial enzymes resulted in only a slight increase in free lysine accumulation at intermediate stages of seed development, while free lysine declined to the low level of control plants toward maturity. To test whether enhanced catabolism may have contributed to the failure of free lysine to accumulate in seeds of transgenic plants, we analyzed the activity of lysine-ketoglutarate reductase (EC 1.5.1.7), an enzyme that catabolizes lysine into saccharopine. In both the control and the transgenic plants, the timing of appearance of lysine-ketoglutarate reductase activity correlated very closely with that of dihydrodipicolinate synthase activity, suggesting that lysine synthesis and catabolism were coordinately regulated during seed development. Notably, the activity of lysine-ketoglutarate reductase was significantly higher in seeds of the transgenic plants than in the controls. Coexpression of both bacterial enzymes in the same plant resulted in a significant increase in the proportions of lysine and threonine in seed albumins. Apparently, the normal low steady-state levels of free lysine and threonine in tobacco seeds may be rate limiting for the synthesis of seed proteins, which are relatively rich in these amino acids.  相似文献   

17.
Cauliflower mosaic virus (CaMV) uses a specialised translation mechanism to bypass the long leader sequence of the 35S RNA. The effect of the CaMV 35S RNA leader sequence on the expression of a downstream beta-glucuronidase (GUS) reporter gene was studied in transgenic tobacco plants. Enzymatic GUS assays of these transgenic plants show that a shunt mechanism of translation indeed occurs in planta with an average efficiency of 5% compared with the leaderless construct. Histological GUS analyses indicate that the shunt mechanism occurs throughout the whole plant and at all developmental stages.  相似文献   

18.
19.
20.
Sequences corresponding to 855 bp of 5' promoter region and the transit peptide from lambdaGK.1,a genomic clone encoding a 22 kDa alpha-kafirin seed protein from sorghum, were translationally fused to a cloned beta-glucuronidase (GUS) coding sequence from uidA and transferred to tobacco via Agrobacterium tumefaciens-mediated transformation. No GUS expression was detectable at any stage of growth in stems or leaves of these plants. However, GUS expression was detected in both embryo and endosperm tissues of resulting tobacco seeds 10-15 days after flowering. Dissected tissues indicate endosperm expression was localized within the bulk endosperm and not within the parenchyma cell layer underlying the integument. These studies also demonstrate that within dissected tobacco embryos, expression from the kafirin promoter was restricted to the mesocotyl region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号