首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the static output-feedback (SOF) stabilization problem for discrete-time Markovian jump systems from a novel perspective. The closed-loop system is represented in a system augmentation form, in which input and gain-output matrices are separated. By virtue of the system augmentation, a novel necessary and sufficient condition for the existence of desired controllers is established in terms of a set of nonlinear matrix inequalities, which possess a monotonic structure for a linearized computation, and a convergent iteration algorithm is given to solve such inequalities. In addition, a special property of the feasible solutions enables one to further improve the solvability via a simple D-K type optimization on the initial values. An extension to mode-independent SOF stabilization is provided as well. Compared with some existing approaches to SOF synthesis, the proposed one has several advantages that make it specific for Markovian jump systems. The effectiveness and merit of the theoretical results are shown through some numerical examples.  相似文献   

2.
New results on stabilization of Markovian jump systems with time delay   总被引:1,自引:0,他引:1  
This paper studies the problem of stochastic stabilization for a class of Markovian jump systems with time delay. A new delay-dependent stochastic stability criterion on the stochastic stability of the system is derived based on a novel Lyapunov-Krasovskii functional (LKF) approach. The equivalence and superiority to existing results are demonstrated. Then a state feedback controller, which guarantees the stochastic stability of the closed-loop system, is designed. Illustrative examples are provided to show the reduced conservatism and effectiveness of the proposed techniques.  相似文献   

3.
This paper is concerned with the robust H control problem for a class of Markovian jump systems with uncertain switching probabilities, whose uncertainties are assumed to be elementwise bounded. First, new criterion of H performance for such uncertain systems is given. Then, new sufficient condition for H controller is established as strict linear matrix inequalities. Finally, a numerical example is used to demonstrate the effectiveness of the proposed methods. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
This brief paper is concerned with the robust stabilization problem for a class of Markovian jump linear systems with uncertain switching probabilities. The uncertain Markovian jump system under consideration involves parameter uncertainties both in the system matrices and in the mode transition rate matrix. First, a new criterion for testing the robust stability of such systems is established in terms of linear matrix inequalities. Then, a sufficient condition is proposed for the design of robust state-feedback controllers. A globally convergent algorithm involving convex optimization is also presented to help construct such controllers effectively. Finally, a numerical simulation is used to illustrate the developed theory.  相似文献   

5.
This paper studies the robust fuzzy control problem of uncertain discrete-time nonlinear Markovian jump systems without mode observations. The Takagi and Sugeno (T-S) fuzzy model is employed to represent a discrete-time nonlinear system with norm-bounded parameter uncertainties and Markovian jump parameters. As a result, an uncertain Markovian jump fuzzy system (MJFS) is obtained. A stochastic fuzzy Lyapunov function (FLF) is employed to analyze the robust stability of the uncertain MJFS, which not only is dependent on the operation modes of the system, but also directly includes the membership functions. Then, based on this stochastic FLF and a non-parallel distributed compensation (non-PDC) scheme, a mode-independent state-feedback control design is developed to guarantee that the closed-loop MJFS is stochastically stable for all admissible parameter uncertainties. The proposed sufficient conditions for the robust stability and mode-independent robust stabilization are formulated as a set of coupled linear matrix inequalities (LMIs), which can be solved efficiently by using existing LMI optimization techniques. Finally, it is also demonstrated, via a simulation example, that the proposed design method is effective.  相似文献   

6.
This paper is concerned with the stabilization problem for a class of discrete-time Markovian jump linear systems with time-delays both in the system state and in the mode signal. The delay in the system state may be time-varying. The delay in the mode signal is manifested as a constant mismatch of the modes between the controller and the system. We first show that the resulting closed-loop system is a time-varying delayed Markovian jump linear system with extended state space. Then a sufficient condition is proposed for the design of a controller such that the closed-loop system is stochastically stable. Finally, numerical simulation is used to illustrate the developed theory.  相似文献   

7.
We propose performance criteria for discrete-time linear systems with Markov jumping parameters. Exact convex conditions for internal stability and contractiveness of such systems are expressed in terms of linear matrix inequalities. These conditions are of the same form as that in the Kalman-Yacubovich-Popov lemma.  相似文献   

8.
A sufficient condition for the exponential estimates of a class of Markovian systems with time delay is established for the first time in terms of the linear matrix inequality (LMI) technique. The estimating procedure is implemented by solving an LMI. The proposed condition is also extended to the uncertain case. Moreover, a state feedback stabilizing controller which makes the closed-loop system exponentially stable with a prescribed lower bound of decay rate is designed. Numerical examples are provided to illustrate the effectiveness of the theoretical results.  相似文献   

9.
This paper focuses on stability and stabilization for a class of continuous-time Markovian jump systems with partial information on transition probability. The free-connection weighting matrix method is proposed to obtain a less conservative stability criterion of Markovian jump systems with partly unknown transition probability or completely unknown transition probability. As a result, a sufficient condition for the state feedback controller design is derived in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the effectiveness and the merits of the proposed method.  相似文献   

10.
This paper is concerned with the problems of H-two filtering for discrete-time Markovian jump linear systems subject to logarithmic quantization. We assume that only the output of the system is available, and therefore the mode information is nonaccessible. In this paper, a mode-independent quantized H-two filter is designed such that filter error system is stochastically stable. To this end, sufficient conditions for the existence of an upper bound of H-two norm are presented in terms of linear matrix inequalities. Considering uncertainty of system matrices, a robust H-two filter is designed. The proposed method is also applicable to cover the case where the transition probability matrix is not exactly known but belongs to a given polytope. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed approach.  相似文献   

11.
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It^o stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

12.
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It^o stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

13.
This paper addresses stability for Markovian jump systems with delayed impulses. The delayed impulse has a largely negative effect on the system stability and is not easy to be studied. The main reason is that so many factors such as Markovian switching, impulse, and time-varying delay are simultaneously contained and make its analysis complicated and difficult. In order to analyze these factors clearly, some novel enlarging techniques are presented and used to establish linear matrix inequality (LMI) conditions ultimately. Based on the given methods, more situations such as impulsive instant sequence satisfying a renewal process and Poisson process, respectively, are further studied and better than ones without considering such properties. Two numerical examples are used to show the effectiveness and superiority of the methods.  相似文献   

14.
Li-Sheng Hu  Peng Shi 《Automatica》2006,42(11):2025-2030
In this paper, we consider the problem of robust control for uncertain sampled-data systems that possess random jumping parameters which is described by a finite-state Markov process. The conditions for the existence of a stabilizing control and optimal control for the underlying systems are obtained. The desired controllers are designed which are in terms of matrix inequalities. Finally, a numerical example is given to show the potential of the proposed techniques.  相似文献   

15.
本文研究了时变时滞与模型相关的随机马尔可夫跳变系统的时滞相关稳定性问题. 通过建立时变时滞与模型相关的系统模型, 构造不同的Lyapunov-Krasovskii函数, 并通过引入改进的积分等式, 以线性矩阵不等式的形式提出了具有较小保守性的时滞依赖稳定性条件. 最后用几个数值算例说明本文结论的有效性及较低的保守性.  相似文献   

16.
The design of robust H-infinity controller for uncertain discrete-time Markovian jump systems with actuator saturation is addressed in this paper. The parameter uncertainties are assumed to be norm-bounded. Linear matrix inequality (LMI) conditions are proposed to design a set of controllers in order to satisfy the closed-loop local stability and closed-loop H-infinity performance. Using an LMI approach, a set of state feedback gains is constructed such that the set of admissible initial conditions is enlarged and formulated through solving an optimization problem. A numerical example is given to illustrate the effectiveness of the proposed methods.  相似文献   

17.
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with °- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper.  相似文献   

18.
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.  相似文献   

19.
In this paper, the stability and stabilization problems of a class of continuous-time and discrete-time Markovian jump linear system (MJLS) with partly unknown transition probabilities are investigated. The system under consideration is more general, which covers the systems with completely known and completely unknown transition probabilities as two special cases — the latter is hereby the switched linear systems under arbitrary switching. Moreover, in contrast with the uncertain transition probabilities studied recently, the concept of partly unknown transition probabilities proposed in this paper does not require any knowledge of the unknown elements. The sufficient conditions for stochastic stability and stabilization of the underlying systems are derived via LMIs formulation, and the relation between the stability criteria currently obtained for the usual MJLS and switched linear systems under arbitrary switching, are exposed by the proposed class of hybrid systems. Two numerical examples are given to show the validity and potential of the developed results.  相似文献   

20.
In this paper, we study the issue of finite-time stabilisation for stochastic Markovian jump systems with time-varying delay by considering a new criterion on finite-time stability. By constructing more appropriate Lyapunov–Krasovskii functional, some new conditions for verifying the finite-time stability of the plant as well as controller synthesis are established in standard linear matrix inequalities. The practical example about a single-link robot arm model demonstrates the validity of the main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号