首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双馈风力发电机无速度传感器控制研究   总被引:1,自引:0,他引:1  
间接利用定子、转子电流间的比例关系,分析转子电流和转子位置观测之间的关系,提出了一种基于PQ 功率转子位置观测法的DFIG 矢量控制策略,这种控制策略克服了其他速度观测方式在同步速运行时观测不准的缺陷,具有较宽广的运行范围,能够取得与有速度传感器控制相似的稳态性能。最后构建了DFIG 仿真与实验平台,对所述无位置传感器控制策略进行了仿真与实验验证。仿真结果和试验结果证明了这个控制方法的正确性与有效性。  相似文献   

2.
In this paper, a sensorless fault tolerant controller for induction motors is developed. In the proposed approach, a robust controller based on backstepping strategy is designed in order to compensate for both the load torque disturbance and the rotor resistance variation caused by the broken rotor bars faults. The proposed approach needs neither fault detection and isolation schemes nor controller re-design. Moreover, to avoid the use of speed and flux sensors, a second order sliding mode observer is introduced to estimate the flux and the speed. The observer converges in a finite time and leads to good estimates of the flux and the speed even in the presence of the rotor resistance variation and the load torque disturbance. Since the observer converges in the finite time, the stability of the closed-loop system (controller with observer) is shown in two steps. First, the boundedness of the closed-loop system trajectories before the convergence of the observer is proved. Second, the convergence of the closed-loop system trajectories is proved after the convergence of the observer. To highlight the efficiency and applicability of the proposed control scheme, simulation and experimental results are conducted for a 1.5 kW induction motor.  相似文献   

3.
将线性自抗扰控制应用于磁通切换永磁电机(FSPMM)的无速度传感器控制中,采用线性扩张状态观测器(LESO)构造FSPMM的转速观测器,实现对转速准确而快速的实时估计;设计线性自抗扰控制器(LADRC)作为转速环调节器,系统的鲁棒性被提高了.仿真结果验证了所设计的基于LESO的无传感器LADRC控制策略能够使FSPMM可靠稳定运行,LESO提升了系统的观测精度和响应速度,克服了滑模观测器(SMO)带来的高频抖振和滞后现象;与基于SMO的无传感器PI控制策略相比,所提的控制策略在负载扰动和参数摄动时具有更强的鲁棒性.  相似文献   

4.
This paper presents a robust high-order sliding mode interconnected observer and an integral backstepping controller for a sensorless interior permanent magnet synchronous motor. To limit the chattering phenomenon on the observed state, a super twisting algorithm is combined with an interconnected observer to design a new high-order sliding mode observer which will be used for multiple-input multiple-output systems. The proposed observer is used to estimate in finite time the rotor position, the speed and the stator resistance. Moreover, a robust nonlinear controller based on the backstepping algorithm is designed where integral actions are introduced step by step. This controller allows to track a desired reference which is computed by using a maximum-torque-per-ampere strategy. Simulation results are shown to illustrate the performance of the proposed scheme by using significant trajectories including the zero speed and under parametric uncertainties.  相似文献   

5.
In order to achieve high‐performance speed regulation for sensorless interior permanent magnet synchronous motors (IPMSMS), a robust backstepping sensorless control is presented in this paper. Firstly, instead of a real mechanical sensor, a robust terminal sliding mode observer is used to provide the rotor position. Then, a new super‐twisting algorithm (STA) based observer is designed to obtain estimates of load torque and speed. The proposed observer ensures finite‐time convergence, maintains robust to uncertainties, and eliminates the common assumption of constant or piece‐wise constant load torque. Finally, a sensorless scheme is designed to realize speed control despite parameter uncertainties, by combining the robust backstepping control with sliding mode actions and the presented sliding mode observers. The stability of the observer and controller are verified by using Lyapunov's second method to determine the design gains. Simulation results show the effectiveness of the proposed approach.  相似文献   

6.
This paper is concerned with the computer-based sliding mode control of flexible rotor—magnetic bearing systems (FR-MBS). The plant dynamics consisting of actuator dynamics and flexible rotor dynamics are described. The reduced-order model for controller design is given by eliminating higher-order modes of the mechanical and electrical magnetic interaction system. A discrete-time sliding mode controller with a new robust reduced-order variable structure system (VSS) observer is proposed and its robust performance is evaluated with several simulations based on a calculation model. This digital controller is implemented to replace a linear analogue PID compensator. Levitation tests using the proposed digital controller are performed and compared with those of the PID compensator. The unstable modes can be easily controlled with the good stability and the spillover phenomena due to ignored higher-order modes are not generated. It is indicated that the discrete-time sliding mode control has robustness to the model parameter variations and external disturbances. Using the discrete time sliding mode controller with the reduced-order VSS observer, the test rig of the magnetic bearing system can be successfully rotated in a speed range of 0–35 000 rpm, which includes the first critical shaft frequency of the flexible rotor.  相似文献   

7.
In this paper a novel sliding‐mode control algorithm, based on the differential geometry state‐co‐ordinates transformation method, is proposed to control motor torque directly. Non‐linear feedback linearization theory is employed to decouple the control of rotor flux magnitude and motor torque. The advantages of this method are: (1) The rotor flux and the generated torque can be accurately controlled. (2) Robustness with respect to matched and mismatched uncertainties is obtained. Additionally, a varying continuous control term is proposed. As a result, chattering is eliminated without sacrificing robustness and precision. The control strategy is based on all motor states being available. In practice the rotor fluxes are not usually measurable, and a sliding‐mode observer is derived to estimate the rotor flux. The observer is designed to possess invariant dynamic modes which can be assigned independently to achieve the desired performance. Furthermore, it can be shown that the observer is robust against model uncertainties and measurement noise. Simulation and practical results are presented to confirm the characteristics of the proposed control law and rotor flux observer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
To achieve high-performance sensorless speed control for the interior permanent magnet synchronous motor (IPMSM) drive system, a terminal sliding mode observer based robust backstepping control is proposed in this paper. Firstly, an integral-type terminal sliding mode observer is designed to replace the real mechanical sensor to obtain the rotor position and speed information. Stability of the observer is guaranteed. Then, a robust backstepping controller with integral and sliding mode actions is designed to achieve speed regulation despite uncertainties and disturbances. The convergence for the backstepping control system is ensured. Finally, the sufficient conditions for input-to-state stability (ISS) property of the observer-controller closed-loop system are also analyzed. Simulation and comparison results have demonstrated the effectiveness of the proposed sensorless control scheme.  相似文献   

9.
提出了一种基于无速度传感器运行的永磁同步电机非线性控制方法。针对电机速度和位置观测,设计了一种新颖的级联式滑模观测器,解决了传统滑模观测采用低通滤波器的相位延迟问题。前级电流滑模观测器得到反电动势,后级反电动势滑模观测器获取转速和位置信息,利用李亚普诺夫理论进行了稳定性分析。针对速度控制,提出了带扩张状态观测器的滑模速度控制器取代PI调节器,提高了系统的鲁棒性。在滑模观测和控制中均利用双曲正切函数取代符号函数,削弱了系统抖振。将上述方法应用到永磁同步电机矢量控制系统中,通过仿真验证方法的有效性。  相似文献   

10.
蔡斌军 《控制工程》2011,18(5):803-805,836
直接转矩控制(DTC)是继矢量控制技术后发展起来的一种新型的交流调速控制方法,但其在低速运行时存在较大的电流、转矩脉动,为了改善直接转矩控制系统的低速性能,提出一种新型的定子磁链低通滤波补偿和转速自适应观测相结合的直接转矩控制方法.该方法提高了定子磁链和转子转速的观测精度,改善了直接转矩控制系统的动静态性能.仿真和实验...  相似文献   

11.
In this paper a quasi‐sliding mode control for a permanent magnet synchronous motor (PMSM) is proposed where a cascade control scheme based on a properly designed state observer provides accurate speed tracking performance. The ultimate boundedness of both the observation error and the speed tracking error is proven. The controller performance has been validated using hardware in the loop (HIL) tests on a simulator based on the model of a commercial PMSM drive. Tests show that the proposed observer‐based controller produces good speed trajectory tracking performance and it is robust in the presence of disturbances affecting the system.  相似文献   

12.
针对包含复合干扰的六旋翼无人机鲁棒控制问题,提出了一种基于滑模观测器的指令滤波鲁棒控制方法。建立了包含复合干扰的六旋翼无人机位置和姿态的数学模型,并对位置回路设计了滑模控制律,从而解算出姿态指令;根据姿态角回路输出的虚拟控制律,设计了指令滤波器来抑制微分爆炸现象,并利用辅助滤波器补偿指令滤波的误差;在角速度回路鲁棒控制律中引入滑模观测器,对包括模型误差和外界扰动的复合干扰进行补偿,实现了六旋翼UAV的指令滤波鲁棒控制。仿真结果表明:提出的指令滤波鲁棒控制律与指令滤波自适应控制方法相比,在复合干扰下具有更优的稳定性、准确性和快速性,位置和姿态的最大误差分别仅为0.05?m和0.5°,滑模观测器的估计误差也仅为0.2 (°)/s,能够在更短的时间内实现对六旋翼UAV位移和姿态的鲁棒控制。  相似文献   

13.
A saliency back‐EMF estimator with a proportional–integral–derivative neural network (PIDNN) torque observer is proposed in this study to improve the speed estimating performance of a sensorless interior permanent magnet synchronous motor (IPMSM) drive system for an inverter‐fed compressor. The PIDNN torque observer is proposed to replace the conventional proportional–integral–derivative (PID) torque observer in a saliency back‐EMF estimator to improve the estimating performance of the rotor flux angle and speed. The proposed sensorless control scheme use square‐wave type voltage injection method as the start‐up strategy to achieve sinusoidal starting. When the motor speed gradually increases to a preset speed, the sensorless drive will switch to the conventional saliency back‐EMF estimator using the PID observer or the proposed saliency back‐EMF estimator using the PIDNN observer for medium and high speed control. The theories of the proposed saliency back‐EMF rotor flux angle and speed estimation method are introduced in detail. Moreover, the network structure, the online learning algorithms and the convergence analyses of the PIDNN are discussed. Furthermore, a DSP‐based control system is developed to implement the sensorless inverter‐fed compressor drive system. Finally, some experimental results are given to verify the feasibility of the proposed estimator.  相似文献   

14.
This paper deals with the problem of controlling a wind energy conversion system (WECS) based on the doubly fed induction generator (DFIG), by IGBT‐based back‐to‐back rectifier‐inverter. The goal of control is to maximize wind energy extraction letting the wind turbine rotor operate in a variable‐speed mode. Interestingly, the present study features the achievement of the above energetic goal without resorting to sensors for wind velocity. The control strategy involves: (i) an output feedback non‐linear regulator designed by the backstepping technique and based on the use of a high gain observer; (ii) a sensorless online reference‐speed optimizer designed using the turbine power characteristic to achieve the maximum power point tracking (MPPT) requirement. It is formally shown that the proposed controller actually meets its control objectives. This theoretical result is confirmed by several simulations.  相似文献   

15.
In this work, a robust control scheme for variable speed wind turbine system that incorporates a doubly feed induction generator is described. The sliding mode controller is designed in order to track the optimum wind turbine speed value that produces the maximum power extraction for different wind speed values. A robust sliding mode observer for the aerodynamic torque is also proposed in order to avoid the wind speed sensors in the control scheme. The controller uses the estimated aerodynamic torque in order to calculate the reference value for the wind turbine speed. Another sliding mode control is also proposed in order to maintain the dc‐link voltage constant regardless of the direction of the rotor power flow. The stability analysis of the proposed controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally, the simulation results show that the proposed control scheme provides a high‐performance turbine speed control, in order to obtain the maximum wind power generation, and a high‐performance dc‐link regulation in the presence of system uncertainties.  相似文献   

16.
针对传统带有滑模观测器的永磁同步电机控制系统中的转矩脉动大、抖振明显、反电动势估计精度差等 问题, 在速度环提出了基于双曲正弦函数的新型趋近率, 结合模糊控制思想对趋近率参数实现自整定, 设计了一种 基于新型趋近率的模糊积分滑模速度环控制器; 同时, 在滑模观测器中提出基于变截止频率低通滤波器和修正反 电动势观测器的两级滤波结构来抑制反电动势中的高频分量和纹波分量, 并对转子位置进行合理补偿, 设计了两级 滤波滑模观测器; 通过Lyapunov判据对本文提出的控制策略的稳定性进行了推导证明. 仿真结果表明, 与传统滑模 观测器相比, 本文控制器可使电机在启动和受到外部扰动时系统响应良好.  相似文献   

17.
This paper focuses in the design of a new adaptive sensorless robust control to improve the trajectory tracking performance of induction motors. The proposed design employs the so‐called vector (or field oriented) control theory for the induction motor drives, being the designed control law based on an integral sliding‐mode algorithm that overcomes the system uncertainties. This sliding‐mode control law incorporates an adaptive switching gain in order to avoid the need of calculating an upper limit for the system uncertainties. The proposed design also includes a new method in order to estimate the rotor speed. In this method, the rotor speed estimation error is presented as a first‐order simple function based on the difference between the real stator currents and the estimated stator currents. The stability analysis of the proposed controller under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. The simulated results show, on the one hand that the proposed controller with the proposed rotor speed estimator provides high‐performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances. Finally, experimental results show the performance of the proposed control scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
针对在负载扰动情况下多永磁同步电机控制系统出现电机转速不同步的问题,提出了基于扰动观测器的永磁同步电机同步协调滑模控制策略。从单电机高性能控制策略和三电机耦合结构角度出发,首先,在矢量控制基础框架下,设计了基于非线性负载转矩观测器的积分型滑模速度控制器,构成了单电机高性能矢量控制调速系统;其次,提出了一种基于PI速度补偿器的偏差耦合控制结构,相比传统的偏差耦合控制结构能较好地实现在负载扰动下三电机的转速同步协调运行。最后通过仿真验证了方法的有效性。  相似文献   

19.
基于DSP的自适应速度辨识直接转矩控制系统研究   总被引:4,自引:1,他引:4  
异步电机直接转矩控制能产生快速且良好的鲁棒性响应,采用自适应磁链观测器,取代传统的积分器,构造了新型的速度估计器,并结合模糊控制器,实现对定子磁链准确观测和系统无速度传感器运行状态。基于DSP(TMS320LF2407A)核心芯片建立数字化控制系统。仿真与实验表明,该系统对电机定子磁链的观测精度高,转速估算准确,尤其在低速下能保持很高的性能。  相似文献   

20.
永磁同步电动机新型滑模观测器无传感器控制   总被引:2,自引:0,他引:2  
由于传统滑模观测器算法存在固有抖振, 根据永磁同步电动机的数学模型, 设计了一种新的滑动模态观测器转子位置自检测控制算法; 切换函数采用饱和函数代替开关函数; 选择合适的边界层厚度以削弱抖振; 将反电动势估算值反馈到定子电流的观测计算中, 通过选择合适的反馈值来提高低速时转子位置角的估算精度和高速时系统的稳定性. 为了简化驱动系统的硬件结构以提高滤波效果, 设计了一个截止频率可随转子转速变化的低通滤波器对延迟进行补偿. 以1台表面式永磁同步电动机为对象进行实验, 实验结果表明, 这种新型滑模观测器对电机参  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号