首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用简便的溶胶凝胶法制备了V2O5/石墨烯复合电极材料。利用SEM、XRD、Raman和TGA表征了样品的微观结构,以V2O5/石墨烯复合材料和Li4Ti5O12分别作为正极和负极组装了V2O5/石墨烯 // Li4Ti5O12全电池。结果表明,该复合电极材料是含有0.55%(质量分数)石墨烯的片状正交相V2O5。电化学测试表明,与未复合石墨烯的纯V2O5样品相比,V2O5/石墨烯复合材料具有更高的储锂活性和优异的大电流放电性能。在200 mA/g的电流密度下,V2O5/石墨烯复合材料和纯V2O5样品的放电比容量分别为283 mAh/g和253 mAh/g;当电流密度增加到5 A/g时,V2O5/石墨烯复合材料依然保持有150 mAh/g的放电比容量,而纯V2O5样品的放电比容量仅为114 mAh/g;V2O5/石墨烯和纯V2O5电极的电荷传递电阻分别为142 Ω和293 Ω。V2O5/石墨烯 // Li4Ti5O12全电池测试结果表明,在1.0 ~2.5 V电压范围内,循环初期全电池正极材料的放电比容量从110 mAh/g衰减到96 mAh/g,随后又出现上升,循环100次后正极材料的放电比容量稳定在102 mAh/g,库伦效率接近100%,这表明该V2O5/石墨烯复合电极材料是一种非常有应用前景的锂离子电池电极活性材料。  相似文献   

2.
通过水热法制备Bi_2O_3-rGO复合物作为高性能锂离子电池负极材料。Bi_2O_3颗粒均匀分布在石墨烯片层中,形成网络结构。Bi_2O_3-rGO复合物负极材料表现出了优异的电化学性能,在100 m A/g的电流密度下,首次放电比容量为1 438.6 m A·h/g,循环100次后容量为312.1 m A·h/g,高于未包覆的Bi_2O_3粉末(首次放电比容量为1 709.6 m A·h/g,循环100次后容量为47 m A·h/g),且在800 m A/g的电流密度下,容量仍有239.1 m A·h/g。Bi_2O_3-rGO复合物优异的电化学性能主要归因于高的电子导电率、大的比表面积及低程度的结构坍塌。  相似文献   

3.
王彩虹  张永锋 《现代化工》2020,(4):158-162+166
二硫化钼(MoS2)是一种稳定、安全、廉价的钠离子电池负极材料,但是二硫化钼的本征电导率较低,限制了钠离子电池的比容量和倍率性能。利用一步水热法制备了二硫化钼和还原石墨烯(MoS2/RGO)复合体系,并用于钠离子电池负极材料中。还原石墨烯不仅能增强复合材料的导电性,而且能够提高MoS2的结构稳定性,从而提升钠离子电池的比容量和循环稳定性。电化学测试结果表明,在1 A/g的电流密度下循环250次后,MoS2/RGO复合电极的比容量仍然高达509 m A·h/g。  相似文献   

4.
通过静电自组装技术成功制备得到柔性自支撑聚二烯二甲基氯化铵-Si/石墨烯(PDDA-Si/G)纳米复合薄膜。该复合薄膜无添加黏结剂及导电炭黑且仍能保持电极结构的完整性,其中石墨烯提供完整的导电网络和机械韧性。电化学测试结果表明,当电流密度为0.2 A/g,复合材料的比容量可达1439.9 (mA·h)/g,库仑效率保持98%以上。且在高电流密度(2 A/g)下,复合材料的比容量仍可维持在499.9 (mA·h)/g,远高于商品化纯Si电极的电化学性能。  相似文献   

5.
通过静电自组装技术成功制备得到柔性自支撑聚二烯二甲基氯化铵-Si/石墨烯(PDDA-Si/G)纳米复合薄膜。该复合薄膜无添加黏结剂及导电炭黑且仍能保持电极结构的完整性,其中石墨烯提供完整的导电网络和机械韧性。电化学测试结果表明,当电流密度为0.2 A/g,复合材料的比容量可达1439.9 (mA·h)/g,库仑效率保持98%以上。且在高电流密度(2 A/g)下,复合材料的比容量仍可维持在499.9 (mA·h)/g,远高于商品化纯Si电极的电化学性能。  相似文献   

6.
以碳布(CF)为骨架,通过简单的溶液加工法制备基于苝酰亚胺(PDI)的炭黑/苝四甲酰二亚胺/热塑性聚氨酯/碳布复合电极材料(SPTC)。碳布骨架构成导电网络,能够显著降低材料的内阻,当SPTC作为锂离子电池的有机正极使用时,表现出优异的倍率性能和循环稳定性。SPTC在0.05 A/g电流密度下的放电比容量高达126 mA·h/g,接近苝酰亚胺分子的理论比容量,在0.5 A/g电流密度下循环300圈后仍能提供80 mA·h/g的比容量,是一种高性能的有机正极材料。  相似文献   

7.
以碳纳米管(MWCNTs)代替导电碳黑(SP)添加到镍钴锰(LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2)三元材料,制成正极浆料涂覆于铝箔上并组装成扣式电池。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)进行结构和性能表征,通过恒流放电和电化学阻抗(EIS)检测电池的电化学性能。分别对掺杂了0.5%、1.%、2%、5%、10%MWCNTs的三元材料进行电化学性能检测,结果显示,5%MWCNTs的三元材料在0.1C放电时,首次和第30次循环的放电比容量分别达到179m A·h/g和167m A·h/g;对比含5%SP的三元材料,放电比容量分别提升了9.9%和8.4%,循环稳定性和倍率性能大幅度提高。以20MPa压力对极片进行密实处理,电极的电化学性能进一步改善,首次和30次循环放电容量分别达到204m A·h/g和187m A·h/g。  相似文献   

8.
通过静电纺丝制备出碳纤维,然后高温退火处理获得氮掺杂多孔碳纤维,并将其作为硫的宿主材料,最终得到NCNFs/S正极材料。利用XRD、TG、TEM等对N-CNFs/S复合电极材料的结构和形貌进行表征。N-CNFs/S作为正极材料组装的锂硫电池的电化学性能测试结果表明,在167 m A/g和836 m A/g的电流密度下,N-CNFs/S复合电极材料循环250圈和500圈后容量分别高达836 m A·h/g和631 m A·h/g;同时,N-CNFs/S复合电极材料还表现出良好的倍率性能。  相似文献   

9.
以水热法制备的镍基金属有机骨架为前驱体,经掺杂改性、高温炭化制得一种表面富含氮原子的多孔炭材料,并与升华硫复合制备硫/炭复合正极材料。利用扫描电镜、比表面分析仪及电化学测试等方法表征材料的结构、形貌和电化学性能。实验结果表明,这种富含N的复合正极材料在电流密度167.5 m A·g~(-1)(0.1 C倍率)下首次放电比容量达到1 218.9 m A·h/g,循环50次后比容量降为560.1 m A·h/g,容量保持率为46%,相较于未掺杂氮的硫/炭复合材料,电化学性能得到显著提高。  相似文献   

10.
朱军峰  闫萌萌  朱婷  高薇春 《精细化工》2021,38(11):2341-2346
采用原子转移自由基聚合法制备了聚(4-丙烯酰胺基-2,2,6,6-四甲基哌啶-1-氧基)-氧化石墨烯(PTAm-GO)复合材料.利用FTIR、1HNMR、电子顺磁共振(EPR)、TGA和SEM对其结构进行了表征.将其作为锂离子电池正极材料组装成半电池进行测试.结果表明,该复合材料是氮氧自由基聚合物PTAm化学接枝的GO.PTAm-GO比纯PTAm具有更好的储锂能力和电化学性能.在200 mA/g电流密度下,经过300次充放电循环后,PTAm-GO和纯PTAm电极的放电比容量分别为138和39 mA·h/g.PTAm-GO和PTAm电极的电荷转移电阻分别为96和179?,表明PTAm-GO是非常有应用前景的锂离子电池活性材料.  相似文献   

11.
以Fe(OH)_3胶体为铁源,探索了一步烧结法制备二维片状结构Fe_2O_3电极材料,考察了烧结温度(400、500、600和700℃)对材料微观结构和储锂性能的影响。结果表明:400℃烧结的样品为α-Fe_2O_3/Fe_3O_4复合材料,其他温度烧结得到的是纯的α-Fe_2O_3;随着烧结温度的升高,组成片状结构致密相连的不规则颗粒逐渐分离,二维片状结构接近坍塌。电化学性能研究发现:500℃下得到的样品电极具有相对较好的储锂性能,在1 A/g的电流密度下循环450圈后放电比容量达628.6 mA·h/g,当电流密度为4 A/g时,放电比容量仍有352.3 mA·h/g。动力学及电极稳定性分析发现,500℃烧结的样品Li~+扩散系数最大(还原峰和氧化峰对应的扩散系数值分别为:1.57×10~(–13)和4.60×10~(–13) cm~2/s),充放电循环过程中结构稳定性最好。  相似文献   

12.
通过水热法结合碳包覆的途径,制备出碳包覆的二氧化钛样品,并对样品进行氮掺杂后作为钠离子电池负极材料。通过XRD、SEM、XPS、充放电测试对其进行结构、形貌分析和电化学性能研究。结果发现,氮离子掺杂对二氧化钛的晶型没有影响,且氮离子成功地掺入晶体内部。氮离子掺杂后,样品N-TiO_2的倍率性能有了明显的提高。在5 A/g电流密度下,样品二氧化钛和N-TiO_2的放电比容量分别为120.5、141.9 m A·h/g。在1 A/g的电流密度下,样品二氧化钛和N-TiO_2的放电比容量分别为115、170.8 m A·h/g,循环1 000圈后,放电比容量依然高达111.2、168 m A·h/g,样品N-TiO_2和二氧化钛均具有优异的循环稳定性,但氮离子掺杂后,比容量有了显著的提高。实验表明,氮离子掺杂后,材料中产生的Ti3+和氧空位有效地提高了材料的导电性,使得其电化学性能有了明显的改善。  相似文献   

13.
锌离子电池是一种环保、廉价、安全的新型电池,它的电化学行为是正极二氧化锰通过锰的价态转换来存储二价锌离子。二氧化锰作为锌离子电池的正极材料,由于其比表面积大、导电性差等特点导致其容量并不能充分发挥。采用自反应反胶束法制备的二维超薄二氧化锰(Mn O2)纳米片作为一种储存锌离子的材料,从整体上提高锌离子电池的容量。以二维超薄二氧化锰(Mn O2)纳米片为正极的锌离子电池,当电流密度为0.1 A/g时,最高容量达到484.2 m A·h/g,接近锌离子电池的最大理论容量616 m A·h/g;当电流密度为5 A/g时,电池循环两百圈后的容量保持率也有80%,表现了很好的循环性能。  相似文献   

14.
为了提高TiO_2负极材料的电化学性能,采用球磨-超声-水热法制备了TiO_2/C/BP复合负极材料,测定了材料的循环放电比容量、倍率性能、循环伏安曲线和交流阻抗。结果表明,二氧化钛掺杂石墨、黑磷后,二氧化钛晶型不受影响,TiO_2/C/BP复合材料颗粒分散性得到改善、交流阻抗减小、导电性明显增强,与纯TiO_2相比,电流密度为100 mA/g,首圈放电比容量由320 mA·h/g提高到502 mA·h/g,第3圈放电比容量由175 mA·h/g提高到335 mA·h/g,经过100次循环后,纯TiO_2的放电比容量降至98 mA·h/g,而TiO_2/C/BP的放电比容量仍维持在255 mA·h/g,放电比容量保持率明显提高,库伦效率的稳定性也得到显著提高。  相似文献   

15.
采用二次水热法将纳米二硫化钴负载于石墨烯上,并通过结构表征和电化学性能测试,探讨了纳米二硫化钴/石墨烯材料作为锂离子电池负极的性能。电容量测试结果表明:在电流密度为100 mA/g条件下,二硫化钴/石墨烯复合材料的首周充放电容量分别为1 610 mA·h/g和774 mA·h/g,测算出的库伦效率为48.1%;循环性能测试结果表明:经过50次循环测算后的复合材料的放电比容量为302 mA·h/g,容量保持率为33.4%;倍率性能测试结果表明:当电流密度回复到100 mA/g时,复合材料的比容量恢复至550 mA·h/g。实验制备的纳米二硫化钴/石墨烯复合材料在锂电池负极的应用上表现出了优异的循环性能和倍率性能。  相似文献   

16.
《化学试剂》2021,43(9):1180-1187
水系锌离子混合电容器具有高能量密度和高功率密度等优点,受到了广泛的关注。开发高性能锌离子电容器的关键在于寻找电池型电极材料,以匹配其与电容型电极材料之间的功率不平衡。通过水热法制备出了碳纳米管与五氧化二铌的复合物(Nb_2O_5@CNTs),在0.2 A/g的电流密度下放电比容量为257 F/g,显示出其作为锌离子混合电容器电极材料的巨大潜力。将Nb_2O_5@CNTs作为负极、高比表面积的活性炭(AC)作为正极组装成Nb_2O_5@CNTs//AC锌离子混合电容器,该电容器的电压区间为0~1.9 V,在0.2 A/g的电流密度下其放电比容量高达95 F/g,经过3 000次循环后容量保持率为72%,具有良好的倍率性能和循环稳定性,能量密度最高达48 Wh/kg,功率密度最高达1 831 W/kg, Nb_2O_5@CNTs//AC锌离子混合电容器有望作为下一代高性能锌离子混合电容器。  相似文献   

17.
采用水热法,以V_2O_5、C_(12)H_(22)O_(11)、Co(NO_3)_2·6H_2O、Al(NO_3)_3·9H_2O为原料,分别合成了纯相VO_2(B)和Al/Co共掺杂VO_2(B)。X射线衍射分析结果显示,掺杂后样品的衍射峰强度变低、峰形变宽、结晶性下降。扫描电子显微镜照片显示,掺杂后样品的形貌发生明显变化,由长棒状(纯相)变为短棒状与片状均匀混合的形貌。电化学性能测试结果显示首次放电比容量和循环性能都大幅度提高。样品A1(摩尔比n(Al):n(Co):n(V)=12:6:100)首次放电比容量为301 mA·h/g,比未掺杂样品(216 mA·h/g)高85 mA·h/g;样品A2(摩尔比n(Al):n(Co):n(V)=12:12:100)首次放电比容量为285 mA·h/g,比未掺杂样品高69 mA·h/g,并且掺杂样品经过100次充放电循环后容量保持率都比未掺杂样品高。  相似文献   

18.
以葡萄糖为碳源,以Li_2CO_3、TiO_2为原料,采用原位复合法制得不同碳质量分数的锂离子电池复合负极材料Li_4Ti_5O_(12)-C。通过X射线衍射和扫描电子显微镜对复合材料的结构及表面形貌进行了表征,采用恒流充放电和电化学阻抗等技术对复合材料进行电化学性能测试。结果表明:Li_4Ti_5O_(12)-C没有杂相,颗粒均匀。其中,碳质量分数为3%的复合材料在0.5 C下的首次放电比容量最高,为185.9 mA·h/g,循环50次后,其放电比容量仍为161.5 mA·h/g,容量保持率为86.9%;在4.0 C下,其首次放电比容量为106.9mA·h/g。与其他样品相比,碳质量分数为3%的复合材料循环伏安氧化还原峰电位相差为278.6 mV,溶液阻抗为6.198?,电荷转移电阻为187.2?,电化学性能最好。  相似文献   

19.
采用悬浮液混合法在热处理温度为400℃的条件下制备了石墨烯改性Li Fe PO_4/C复合正极材料。利用X射线衍射分析、扫描电子显微镜、透射电子显微镜等对石墨烯改性Li Fe PO_4/C正极材料的组成、结构和形貌进行了表征,并组装扣式电池,在2.0~4.2 V电压范围下测试了其–10℃时的电化学性能。结果表明,5%(质量分数,下同)石墨烯改性的正极粉未样品G5颗粒分布均匀,石墨烯构成了三维导电网络;相比其它组分,样品G5在1C倍率下具有最高的放电容量(115.4 m A·h/g),循环200次后容量保持率为93.6%;同时,样品G5具有最低的电荷转移阻抗(106.9W)和最高的锂离子扩散系数(7.12×10~(–11) cm~2/s)。  相似文献   

20.
以醋酸锂和钛酸四正丁酯为原料,制备了纯相Li_4Ti_5O_(12),再用简单的水热法合成Li_4Ti_5O_(12)/Fe_3O_4复合材料作为锂离子电池的负极材料,通过XRD、SEM以及电池测试系统对纯相Li_4Ti_5O_(12)和Li_4Ti_5O_(12)/Fe_3O_4复合材料进行了结构、形貌及电化学性能测试。结果表明,制得的复合物具有较好的球形结构且粒径较小(200~300 nm),综合电化学性能较好。由于复合的Fe_3O_4有较高的理论容量,该Li_4Ti_5O_(12)/Fe_3O_4复合材料表现出比纯相Li_4Ti_5O_(12)大的容量,在1.0 C下循环100圈后,Li_4Ti_5O_(12)/Fe_3O_4的放电比容量仍能达到470.2 m A·h/g,同时也表现出比纯相Li_4Ti_5O_(12)更优的倍率性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号