共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
为了准确识别转子不平衡、不对中、碰摩和油膜涡动等故障,利用小波分析对转子故障信号进行4层分解,将频率由高到低的5个分支信号作为奇异值分解(Singular Value Decomposition,SVD)矩阵的行向量,经奇异值分解后得到信号的故障特征值。通过支持向量机(Support Vector Machine,SVM)在选择不同的核函数和结构参数下比较其对转子故障诊断结果的影响。结果表明在选择最优SVM模型和参数的基础上,对SVD获得的故障特征值进行诊断,得出了准确的诊断结果。 相似文献
3.
4.
5.
《机械设计与制造》2016,(6)
针对滚动轴承故障诊断中特征向量难以提取与支持向量机结构参数选取依据经验的问题,提出了基于小波包与奇异值分解的GA-SVM滚动轴承故障诊断方法。首先,采用小波包对采集的滚动轴承各状态下的信号进行分解,获取表征信号局部特征的各节点系数,在此基础上构建各节点系数矩阵并进行奇异值分解,来获取特征向量进而将其作为故障诊断模型的输入;其次,利用遗传算法(GA)优化支持向量机(SVM)的惩罚系数和高斯核系数两个结构参数;最后,将上述特征向量作为输入,建立GA优化SVM的故障诊断模型,实现滚动轴承的状态辨识。实验结果表明,与BP、SVM、PSOSVM相比,基于小波包与奇异值分解的GA优化SVM滚动轴承故障诊断方法具有更高的分类精度,能够提高滚动轴承状态辨识的效果。 相似文献
6.
7.
为了从复杂的轴承振动信号中提取微弱的故障信息,提出了一种基于局部均值分解(local mean decomposition,LMD)和奇异值差分谱的轴承故障诊断方法。首先通过LMD将非平稳的原始轴承故障信号分解为若干个PF(product function)分量,由于背景噪声的影响,难以从PF分量准确得到故障频率,对PF分量进行Hankel矩阵重构和奇异值分解,相应的得到奇异值差分谱,根据奇异值差分谱理论对某个PF分量进行消噪和重构,然后再求重构后PF分量的包络谱,便能准确地得到故障频率。仿真分析和滚动轴承内圈故障实例很好地验证了提出的改进方法的有效性。 相似文献
8.
针对含噪信号的有效奇异值个数难以确定的问题,提出了一种改进的奇异值分解降噪方法——奇异值累积法。该方法通过计算奇异值的实际下降值与奇异值平均下降速度累积量的差值,并取该差值最大值点的位置作为有效奇异值的分界点来确定有效奇异值的个数。在此基础上,提出了一种基于奇异值累积法与快速谱峭度的滚动轴承故障诊断方法。采用奇异值累积法对原信号进行降噪处理,然后利用快速谱峭度确定滤波器中心频率及带宽,通过分析频段包络谱中明显的频率成分来诊断故障。该方法可以有效去除信号中的噪声,使得到的峭度值所反映的故障冲击更接近实际情况。对含内圈、外圈故障的滚动轴承实验数据进行分析,实验结果表明,相比快速谱峭度的故障诊断方法,该方法具有更好的故障识别效果。 相似文献
9.
10.
LMD和支持向量机相结合的齿轮毂故障诊断方法 总被引:1,自引:0,他引:1
《机械科学与技术》2015,(10):1599-1603
局部均值分解(LMD)作为一种新的自适应时频分析方法,在故障诊断领域展现了良好的应用前景。根据某型航空发动机减速器一级齿轮毂出现裂纹故障时其振动信号会产生调制现象的特点,提出了基于LMD和支持向量机(SVM)的某型航空发动机减速器一级齿轮毂裂纹故障诊断方法。对某型航空发动机进行振动测试获取其振动样本数据,利用LMD提取故障样本数据的故障特征信息、构造特征向量,并将其作为SVM的输入特征参数,成功建立了针对目标故障的故障诊断模型。对一级齿轮毂工作状态的分析结果表明了该方法的有效性。 相似文献
11.
基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法 总被引:15,自引:2,他引:15
针对随机噪声和局部强干扰影响经验模态分解(Empirical mode decomposition,EMD)质量的问题,提出一种形态奇异值分解滤波消噪方法,并将其与EMD相结合形成一种新的故障特征提取方法。该方法首先对原始振动信号进行相空间重构和奇异值分解(Singular value decomposition,SVD),根据奇异值分布曲线确定降噪阶次进行SVD降噪,再形态滤波,最后把消噪后的信号进行EMD分解,利用本征模模态分量(Intrinsic mode function,IMF)提取故障特征信息。对仿真信号和实际轴承故障数据的应用分析表明,该方法能有效地提取轴承故障特征,诊断轴承故障,还可以减少EMD的分解层数和边界效应,提高EMD分解的时效性和精确度。 相似文献
12.
13.
基于支持向量机的齿轮故障诊断方法 总被引:3,自引:0,他引:3
对齿轮故障诊断的特点进行了阐述,指出由于环境噪声的干扰,在齿轮故障诊断中往往不能获得理想的诊断结果。为此在对齿轮运行状况进行有效特征提取的基础上,采用支持向量机的方法对齿轮进行故障诊断。研究结果表明采用该方法可以获得比神经网络和线性判别方法等更准确的诊断结果。 相似文献
14.
柴油机发电机组结构复杂,故障类型多样,其动力传动部件兼具往复机械与旋转机械的振动特性。传统的频谱分析主要通过利用傅里叶变换将在时域内难于分辩的信号映射到频域内进行分析,这对于具有平稳特点的原始信号比较有效,但是对于柴油发电机组而言,频谱分析难以提取其频率分量,因此难以实现故障诊断。通过总体平均经验模式分解(EEMD)的方法获得其本征模式函数的近似熵,将该近似熵作为特征向量结合支持向量机(SVM)进行分类,从而实现柴油发电机组的故障识别。通过实验仿真和某柴油发电机组振动异常问题的实测试验表明,该方法可以准确有效的提取其故障信息和频率,为柴油发电机组传动机构故障诊断提供支持。 相似文献
15.
16.
对基于支持向量机的多类分类故障诊断方法进行了研究.采用9频段幅值谱作为分类器的特征输入.比较了现有常用的几种支持向量机多分类方法:"一对一"法、"一对多"法、导向无环图法.试验结果表明导向无环图法耗时短、分类精度更高,更适合应用于机械多分类故障诊断研究. 相似文献
17.
随着设备复杂性程度的提高,最终导致在设备的故障诊断中越来越多地采用智能方法.为此介绍了几种基于核算法智能故障诊断方法和几种预测模型,并提出一种新的在线故障诊断方法. 相似文献