首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
高速列车制动盘瞬态温度和热应力分布仿真分析   总被引:5,自引:4,他引:5  
制动盘的热疲劳损伤是当前列车安全制动的主要威胁。制动过程中的瞬态温度和热应力分布是热疲劳损伤研究的基础。通过建立制动盘无内热源的三维温度场分布的数学计算模型,采用热弹塑性有限元法,利用摩擦功率法计算温度场载荷,仿真不同制动工况下制动盘摩擦热负荷产生的温度场以及热应力分布。主要计算一次常用制动、一次紧急制动、三次紧急制动和一次坡道制动这4种制动工况。通过仿真分析发现,不同工况下制动盘面的温度变化有着相似的规律。制动开始阶段,随着强热流的不断输入,盘面在很短时间内迅速升温,很快达到峰值点。随后,盘体逐渐通过辐射和对流的方式散热,温度缓慢下降。相对紧急制动和常用制动的升温过程,坡道制动的升温显得缓慢一些。研究不同工况下制动盘温度和热应力的变化和分布规律,为高速列车复合材料制动盘的热疲劳性能评价提供依据。  相似文献   

2.
吴志豪  吴兵 《机械强度》2023,(1):190-197
电制动失效时的摩擦制动热负荷引起的制动盘热疲劳损伤是影响列车运行安全的重要因素。建立地铁列车轴装制动盘摩擦制动三维有限元模型,调查了制动盘在一次常用制动、一次紧急制动两种制动工况时的热-力耦合情况,获得制动盘在两种制动方式下的温度场和应力场。仿真结果表明,不同工况下制动盘面的温度分布具有相似规律,即在制动初期,盘面温度迅速上升并很快达到峰值点166.81℃和151.5℃,随后盘面温度缓慢下降。应力场初始以机械应力为主,随着制动温度的上升,热应力成为主要影响因素。应力场与温度场分布相似,但应力峰值延后于温度峰值出现。热应力在制动中会引起材料损伤积累,导致制动盘疲劳开裂。  相似文献   

3.
基于有限元软件ANSYS建立某大型风电主轴制动器的三维有限元模型,运用参数化语言APDL进行编程,实现热载荷的循环施加,并对正常工况和紧急工况下制动盘温度场进行数值计算。结果表明,制动盘温度分布不均匀,摩擦区域温度呈现锯齿状波动,从而产生热冲击;制动盘表面摩擦区域各处温度最高点约处于制动过程的3/5段,紧急工况温度大大高于正常工况;制动结束后摩擦热向非摩擦区移动,摩擦区轴向温度趋于一致,而非摩擦区轴向上内部温度大于表面温度。  相似文献   

4.
动态摩擦因数对蝶式制动器温度场影响的试验和模拟研究   总被引:2,自引:0,他引:2  
针对蝶式制动器制动过程中温度场研究的需要,利用相似原理研制定速制动试验台,用以模拟摩托车匀速下长坡时的制动工况。制动试验台用车床的三爪卡盘控制固定在旋转轴上的制动盘做定速旋转运动,内外摩擦片通过液压力夹紧制动盘,使制动盘与摩擦片发生摩擦运动,通过热电偶、拉压力传感器、压力表、热成像仪分别测出定速制动50 s的摩擦片上固定点的温度变化、制动扭矩(经计算得出)的动态变化、制动力的均值、制动盘摩擦区域的温度场变化,实时显示并记录下来。定速制动摩擦试验机能实现不同转速、不同制动力等条件下,制动过程中的各变量的动态测量。试验还选取热成像仪测得的最大的温度为变量,研究摩擦因数随温度的变化。在试验的基础上,用ABAQUS对制动盘与摩擦片的相互作用做了一些仿真和分析。仿照实际模型1∶1建模,加载与边界条件与实际模型相同,将测得的摩擦因数随温度变化的数据输入接触条件,仿真得到制动盘与摩擦片温度场的变化。仿真与试验的结果对比表明摩擦因数动态变化的接触模型能很好的模拟制动的实际工况。  相似文献   

5.
为改进制动盘的使用寿命,研究车辆速度改变时制动盘峰值温度、最大温差以及单位时间温度增量在不同制动时刻的瞬时温差。利用ADINA软件,针对盘形制动,基于热-机耦合模型模拟计算制动压力0.5 MPa、制动初速度140、160和180 km/h工况下制动盘温度场的变化。结果表明:随制动初速度的增加,盘面峰值温度和最大温差增加,3种速度条件下盘面峰值温度分别为151、167、200℃,最大温差分别为85、91和112℃;盘面温差主要缘于摩擦弧的分布形态,制动初速度的增加放大了摩擦弧的作用;制动初速度对制动盘单位时间温度增量的影响主要体现在制动初始阶段,在制动后期,温度的变化主要由冷却条件和热传导所控制;盘轴向最大温差依赖于盘的导热性能,对制动初速度不敏感。  相似文献   

6.
制动摩擦热对摩擦副的摩擦学特性有着重要影响。根据制动摩擦热分析理论,建立了风电主轴盘式制动器摩擦副的有限元模型,并模拟了风电制动过程的三维瞬态温度场,获得了风电主轴制动器紧急制动工况下的温度场分布。结果分析表明,制动盘表面温度场呈非对称分布,且温度高和温度低的区域区别显著,摩擦副径向、轴向和周向上存在较大的温度梯度并预测了制动盘可能存在安全隐患的部位。得到风电主轴单次制动120 s内的摩擦副热量产生与耗散曲线,预测了单次制动后摩擦副恢复常温所需时间。  相似文献   

7.
高速列车制动时,制动盘摩擦表面的温度场直接影响制动盘表面磨损、相变、热裂纹及其使用寿命。以某型高速列车基础制动装置现役锻钢制动盘为研究对象,建立热载荷模型:考虑制动闸片几何形状和分布对热流密度的影响,建立了基于微元法的摩擦面热流密度计算模型;由于热辐射计算的非线性求解特性,将热辐射系数折算成等效对流换热系数,建立了对流换热模型与辐射换热模型相结合的综合换热模型。考虑到制动盘面和散热筋几何截面的突变性,建立了由盘面和散热筋六面体网格与接触部位过渡网格构成的制动盘热分析有限元模型。对高速列车在200km/h速度下紧急制动时制动盘瞬态温度场进行仿真分析。得到制动盘温度分布规律和温度变化曲线,为制动盘选材及结构优化提供相应理论参考。  相似文献   

8.
周素霞  邵京  童欣 《机械工程学报》2022,58(20):391-398
随着我国中西部地区高速铁路的建设,由于长大坡道线路带来的问题日益凸显。在长大坡道行驶时如果电制动出现故障,将采用纯空气制动,长大坡道造成的持续制动会导致制动盘的热负荷急剧上升。由于散热的时效较慢从而导致制动盘温度过高,同时产生较大的温度梯度,从而导致制动盘热疲劳裂纹产生。为了解决长大坡道工况下制动盘的换热效率提升和降温问题,基于兰新线的长大坡道工况,通过设计新型的铝嵌钢结构制动盘,采用有限元分析软件对铝嵌钢结构制动盘和全钢制动盘进行仿真计算,得到温度场和热应力分布。结果表明,在长大坡道采用纯空气制动时,铝嵌钢制动盘可以在实现轻量化的同时明显降低制动盘面的温度和温度梯度,缓解长大坡道制动带来的制动盘热疲劳问题。  相似文献   

9.
运用ANSYS建立高速列车制动盘有限元模型,基于移动热源法对不同结构参数制动盘进行温度场仿真,对比分析散热筋形状、直径、疏密和制动盘盘体厚度对制动盘温度场的影响规律。结果表明:制动过程中,制动盘温度呈现先快速上升后缓慢下降的趋势,最高温度位于制动盘表面摩擦接触区域;采用长方柱状散热筋相比圆柱状能降低制动盘最高温度5.3%;制动盘最高温度与散热筋直径呈接近线性关系,与盘体厚度呈近似抛物线关系;增加摩擦接触区域对应的散热筋数量可以降低制动盘最高温度。最后基于仿真结果进行回归分析,拟合出制动盘最高温度函数模型,为制动盘优化设计提供了依据。  相似文献   

10.
高飞  孙野  杨俊英  符蓉 《机械工程学报》2015,51(19):182-188
摩擦副结构是影响制动盘温度分布的重要因素之一。针对闸片形状为圆形、三角形和六边形三种结构的摩擦副,采用制动试验台进行了速度为50~250 km/h的制动试验,并利用ABAQUS软件数值模拟了三种摩擦副不同工况条件下制动盘温度场的变化过程。结果表明:数值模拟温度场与试验测试结果具有良好的相似性。摩擦副结构对盘面温度分布的影响程度与制动条件密切相关,其结构形式对制动盘面温度的影响程度在制动初期最为明显,且随制动初速度和制动压力的增加而增加。这缘于闸片结构的不同导致了摩擦面摩擦弧长分布的不同,随制动速度升高和压力增加,摩擦弧长的差异起到了放大能量差别的作用,从而表现制动盘温度分布对闸片结构的敏感程度增加。  相似文献   

11.
以CRH380BL型高速动车组的动车转向架上轴盘制动为研究对象,基于摩擦功率方法,对轴盘进行热负荷仿真研究及边界条件的确定。利用ANSYS软件,对动车组在350 km/h紧急制动过程中,制动盘的三维瞬态温度场在径向、轴向以及深度方向上的分布情况进行仿真,并从制动盘所能承受的最高温度方面分析其制动能力。结果表明:轴盘摩擦表面在制动初期温度呈环状分布,由于散热筋具有良好的散热功能,随后在散热筋之间的摩擦环面上产生不断地向周围扩散的团状高温区;制动后期,制动盘的温度呈层状分布,温度从制动盘的上表面自上而下递减,同时温度随着靠近轴盘轴心孔位置而渐渐降低,这表明轴盘制动过程中轴盘的温度分布受轴盘结构的影响。  相似文献   

12.
为研究轮轨激励对高速列车轴装制动盘热-机耦合疲劳影响,建立高速列车制动盘动力学模型和三维瞬态热-机耦合有限元模型,对紧急制动工况下轴装制动盘振动特性和热-机耦合特性进行计算分析。结果表明,高速列车制动盘在垂向上的振动加速度值最大,横向上最小,且振动形式以制动抖动为主,在0~100 Hz范围抖动最剧烈;与无轮轨激励工况相比,有轮轨激励的轴装制动盘表面温度升高得既快又高,在散热时,温度下降也更快;摩擦面总体呈现三个环状温度分布,在摩擦半径中心处制动盘表面温度比两侧温度高,在三个不同的摩擦半径上,温度呈现梯度分布;有、无轮轨激励工况下制动盘表面的疲劳损伤和疲劳寿命的分布云图与制动盘表面的温度场分布情况基本一致,且热应力越大制动盘表面的疲劳损伤越严重,疲劳寿命越短。  相似文献   

13.
针对目前摩擦热流加载方式对列车轴盘制动温度场影响规律的研究不全面的问题,系统考察了不同制动工况条件下,旋转热流法和均布热流法这两种摩擦热流加载方式计算得到的制动盘温度场的变化规律及差异性。计算结果表明,在不同制动工况条件下,对于制动盘面上的温度最高点,旋转热流法与均布热流法计算得到的温度值及其变化特性的差异最大。同时,这种差异与闸片-制动盘接触面积、车辆制动初速度、制动减速度以及轮质量等工况条件密切相关。随着距离盘面深度的增加,这种差异迅速减小,在2 mm处可近似认为相同。此外,在连续多次制动条件下,某一次制动中旋转热流法与均布热流法计算结果的差异性与之前的制动无关,并据此提出一种制动盘最高温度值的快速算法。研究成果为列车轴盘制动温度场计算中摩擦热流加载方式的选择提供了理论依据。  相似文献   

14.
考虑了闸片形状对制动盘摩擦面上热流密度分布的影响,利用微元法计算热输入模型,将辐射换热系数折算成等效对流换热系数,建立了高速列车制动盘的有限元分析模型,并利用ANSYS对制动盘制动过程中温度场的分布进行了仿真分析。  相似文献   

15.
基于ABAQUS软件建立地铁制动盘的有限元模型,确定热-机耦合的载荷与边界条件,建立地铁制动盘制动过程中摩擦生热动态仿真模型,采用完全耦合热-机耦合原理同时考虑温度场与应力场之间的相互影响,准确的揭示地铁制动盘在制动过程中的温度场与应力场,对分析制动盘的热裂纹产生,提高制动盘寿命提供依据。  相似文献   

16.
《机械传动》2015,(12):44-48
为了解决重载车辆盘式制动器使用寿命短、热变形较大等问题,以油冷盘式制动器为研究对象,建立油冷盘式制动器制动工况下热机耦合分析模型,最后得到制动盘厚度与冷却油流速对制动器制动盘接触表面、内部的应力场、温度场分布影响规律。研究结果表明,油冷盘式制动器在连续制动工况下最高制动温度与最大制动应力均满足材料使用要求;随着制动盘厚度增加,制动器制动温升变化量、应力值均呈现下降的趋势;随着油液流速的增加,制动器最高温度与最大应力也呈现下降趋势,且当油液流速为4 m~3/h时,制动器应力值稳定。  相似文献   

17.
研究矿车盘式制动器耦合场的分布规律。采用温度场与应力场直接耦合方法,根据矿车制动摩擦副的实际尺寸及热传导的原理,建立摩擦副三维瞬态热-结构耦合的有限元模型,对制动器在紧急制动工况下进行数值模拟。结果表明,耦合场下制动盘温度场、应力场都呈现带状分布,温度与应力的最大值出现在摩擦盘与摩擦片接触挤压处,且应力最大值的出现稍滞后于温度最大值,这说明了二者之间具有耦合特性; 摩擦副径向、轴向具有较大的温度分布梯度,因此会产生较大的热应力,对制动器摩擦副材料造成热冲击和热疲劳,严重时可能会导致制动盘出现裂纹。  相似文献   

18.
应用有限元方法对准高速机车制动盘制动过程中由于摩擦生热引起的热弹性问题进行研究.利用Pro/E软件建立制动盘三维实体模型,并将之导入ANSYS中建立制动盘的三维有限元模型.根据热力学理论建立传热数学模型以及耦合的热弹性本构模型.虚拟仿真过程中考虑热流密度和换热系数随时间变化的影响,得出随时间变化的温度场和应力场.仿真结果表明,制动盘在制动后20s最高温度达到121℃,在制动后10s最大应力达到210MPa.  相似文献   

19.
吴刚  张东东 《润滑与密封》2022,47(10):126-133
为进一步研究盘式制动器在制动过程中的行为,在建立盘式制动器热-机耦合简化计算模型的基础上,考虑温度变化对材料物理性能和摩擦因数的影响,运用ANSYS Workbench模拟分析不同制动初速度与不同制动压力下制动盘的热-机耦合特性,并从制动盘径向、周向、轴向等维度对其温度场与应力场进行了研究。结果表明:盘式制动器在紧急制动过程中,温度和应力的最大值与制动初速度和制动压力成正相关;制动初速度和制动压力对制动盘温度场和应力场有较大的影响,其中制动压力对制动盘温度和应力最大值的影响比制动初速度更加明显;制动盘温度与等效应力在圆周上都呈环带状分布,二者具有一致性,制动盘达到温度最大值早于达到应力最大值,二者之间具有耦合特性;制动盘温度在径向和轴向上存在较大的温度梯度,从而引起较大的应力变化。研究结果为探索制动盘温度场、应力场分布规律和制动盘在不同工作状态下的热-机耦合特性提供了参考。  相似文献   

20.
汽车气压盘式制动器瞬时温度场研究   总被引:3,自引:1,他引:2  
华林  向上升 《润滑与密封》2007,32(5):8-11,29
基于盘式制动器制动过程中能量耗散的研究,建立了紧急制动过程中制动盘与摩擦片瞬态温度场分析的有限:元模型。采用直接热力耦合有限元方法来分析制动器摩擦热的产生及其温度的瞬态分布。结果表明,摩擦片与制动盘的:最高温度和达到最高温度的时间都不一样,摩擦片的温度从内径到外径基本是升高的,制动盘表面温度是中间部分最:高,内外径表面温度相对较低。与间接热力耦合方法相比,直接热力耦合方法考虑了制动器温度场与其应力应变场的瞬;态交替影响,使温度场的研究结果更接近实际工况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号